Internumutan 2030

A-gtunal Rranourtaton Plan

Brigerisul ge:
Intermumbin
Traspurtation
Planming Beytor

$?$
Felsburg
HOLT \&
whatiote
 UlLEVIG

INTERMOUNTAIN

2030 REGIONGL TRANSPORTATION PLAN

Prepared For:
Intermountain Transportation Planning Region

Prepared By:

Felsburg Holt \& Ullevig
6300 South Syracuse Way, Suite 600
Centennial, CO 80111
(303) 721-1440

Notice: \quad This document has been prepared using Federal funding from the United States Department of Transportation. The United States Department of Transportation assumes no responsibility for its contents or use thereof.

2030 Intermountain Regional Transportation Plan

TaBLE OF CONTENTS

Page
I. INTRODUCTION 1
A. Project Background 1
B. Planning Process 4
C. Public Involvement 6
D. Regional Values, Vision, and Goals 7
II. INVENTORY OF EXISTING TRANSPORTATION SYSTEM 11
A. Roadway System -11
B. Rail System 31
C. Transit System 35
D. Bicycle/Pedestrian System 38
E. Aviation System 38
F. Intermodal Connections 42
III. ENVIRONMENTAL PROFILE 44
A. Air Quality 44
B. Water Quality 44
C. Noise 45
D. Threatened or Endangered Species -46
E. Public Lands 47
F. Historical/Archaeological Sites 48
G. Hazardous Materials -50
IV. REGIONAL GROWTH 51
A. Existing Socio-Economic Profile 51
B. Projected Socio-Economic Profile 59
C. Projected Travel Demand 60
D. Projected Volume to Capacity Ratios 62
V. CORRIDOR VISIONS 64
A. Corridor Visions 68
B. Project Categories 70
C. Project Prioritization 70
VI. PREFERRED PLAN 73
A. Regional Priority Program Projects 73
B. Transit Element 85
C. Aviation Projects 85
D. Local Transportation Needs 89
E. Summary of Preferred Plan Costs 89
Felsburg Holt ε Ullevig

TABLE OF CONTENTS (Continued)

Page
VII. FISCALLY CONSTRAINED PLAN 90
A. Resource Allocation 90
B. Fiscally Constrained Plan 90
APPENDIX A. PUBLIC PARTICIPATION
APPENDIX B. CORRIDOR VISIONS
APPENDIX C. PROJECT PRIORITIZATION
APPENDIX D. CURRENT STIP

2030 Intermountain Regional Transportation Plan

LIST OF FIGURES

Page
Figure 1. TPR Boundaries 2
Figure 2. Intermountain Planning Region 3
Figure 3. Plan Development Process 5
Figure 4. National Highway System 12
Figure 5. Roadway Functional Classification 14
Figure 6. Existing Annual Average Daily Traffic Volumes 16
Figure 7. Existing Volume to Capacity Ratios -17
Figure 8. Roadway Surface Conditions 20
Figure 9. Accident Rates on National Highway System 22
Figure 10. Accident Rates on Other State Highways 23
Figure 11. Structurally Deficient and Functionally Obsolete Bridges -27
Figure 12. Scenic and Historic Byways -29
Figure 13. Truck Traffic 30
Figure 14. Hazardous Materials Routes 32
Figure 15. Rail System 33
Figure 16. Transit Service Areas 37
Figure 17. On-System Bicycle Routes 39
Figure 18. Airports 40
Figure 19. Intermodal Connections 43
Figure 20. 2020 Population Centers 52
Figure 21. Minority Populations -55
Figure 22. Low Income Households 56
Figure 23. 2030 Projected Annual Average Daily Traffic Volumes 61
Figure 24. Future Volume to Capacity Ratios 63
Figure 25. Significant Commuter Travel Patterns -65
Figure 26. Intermountain Transportation Corridors 67
Figure 27. Intermountain 2030 Fiscally Constrained Transportation Plan 93

2030 Intermountain Regional Transportation Plan

LIST OF TaBLES

Page
Table 1. Summary of State Highway Centerline Miles 13
Table 2. Historic Growth in Traffic on Selected State Highway Segments 18
Table 3. Summary of Vehicle Miles of Travel on State Highways (Intermountain TPR) 19
Table 4. Roadway Surface Condition Matrix 19
Table 5. Functionally and Structurally Deficient Bridges 25
Table 6. Railroad/Highway Grade Crossing Accidents (1999-2003) 34
Table 7. Historic Commercial Passenger Service Enplanements 41
Table 8. Historic Annual General Aviation Operations 41
Table 9. Intermountain TPR Public Lands 47
Table 10. Intermountain TPR Wilderness Areas 47
Table 11. State and National Historic and Archaeological Sites 48
Table 12. CERCLIS Sites -50
Table 13. Historic Population Growth, 1990 to 2000 -51
Table 14. Summary of Selected Demographic Characteristics by County -53
Table 15. Population by Race -53
Table 16. Low-Income Population -54
Table 17. Housing Characteristics - Year 2000 -54
Table 18. Vehicle Registrations - Year 2000 -57
Table 19. Year 2000 Employment Data by County -57
Table 20. Intermountain TPR Agriculture -59
Table 21. Year 2030 Population Forecasts -59
Table 22. Year 2030 Projected Employment -60
Table 23. Intermountain Transportation Corridors 66
Table 24. Potential Environmental Concerns by Corridor 69
Table 25. Project Evaluation Criteria -71
Table 26. Project Summary by Mode -73
Table 27. Intermountain 2030 Preferred Plan 74
Table 28. Intermountain TPR 2030 Aviation Projects 86
Table 29. Intermountain 2030 Fiscally Constrained Plan -91
Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element) 94

2030 Intermountain Regional Transportation Plan

I. INTRODUCTION

a. Project Background

Since the early 1990's, the Colorado Department of Transportation (CDOT) has followed a cooperative process, involving state and local representatives, for long-range planning efforts in the development of the Statewide Transportation Plan (STP). The state has been divided into 15 Transportation Planning Regions (TPR's) based on geographic location, common transportation corridors, and socio-economic similarities.

Each of the 15 TPR's develops a preferred plan identifying a vision of future transportation needs. A financially constrained plan then identifies a reasonable expectation of which projects might receive funding over the next 20 years.

The Statewide Transportation Plan combines the 15 RTP's into an overall perspective of Colorado's transportation needs for the next 20 years. The Statewide Transportation Improvement Program (STIP) includes projects scheduled for implementation in the next six years. Only projects consistent with the RTP are eligible for inclusion in the Statewide Transportation Plan, and, consequently, only these projects are eligible for State and Federal funding through the STIP. Figure 1 shows Colorado's 15 Transportation Planning Regions, and highlights the location of the Intermountain TPR within the State.

As depicted on Figure 2, the Intermountain TPR consists of five counties: Eagle, Garfield, Lake, Pitkin, and Summit. This region includes 22 cities or towns, separated by large expanses of rural and often mountainous countryside. There are several major ski resort areas, including Keystone, Breckenridge, and Copper Mountain in Summit County; Vail and Beaver Creek in Eagle County; and Aspen and Snowmass in Pitkin County. There are also several smaller ski areas, such as Ski Cooper in Lake County and Sunlight Resort in Garfield County. In addition to winter attractions, the Intermountain TPR offers tourists year-round outdoor recreational opportunities, including camping, hiking, biking, golf, hunting, fishing, and sight-seeing. The Intermountain Regional Planning Commission (RPC) was established to facilitate the regional transportation planning process. The Intermountain RPC is composed of representatives from all five counties and from the 22 communities within the TPR.

Every five years, each TPR must update its Regional Transportation Plan (RTP) to establish multi-modal transportation needs and priorities. The resultant RTP's are then integrated into the STP.

In 1994, the Intermountain TPR prepared the first RTP, which identified transportation improvement needs to the projected year 2015. In 1999, an updated RTP extended the projected needs to the year 2020. As CDOT is currently in the process of developing a year 2030 Statewide Transportation Plan, the Intermountain TPR has prepared this update to the 2020 RTP, with refinements that expand the planning horizon to 2030.

2030 Intermountain Regional Transportation Plan

B. Planning Process

The 2030 planning process was conducted at the direction of the RPC, through close coordination with representatives from CDOT Regions 1 and 3. Two major differences from the 2020 plan are the development of Corridor Visions and the prioritization of projects across all modes of transportation.

The transportation planning process is graphically summarized on Figure 3. The Preferred Plan component of the RTP represents all projects deemed necessary to maintain mobility levels to the year 2030 without consideration of available regional priority funding. The Financially Constrained Plan is extracted from the Preferred Plan based on the projected funding through CDOT's Regional Priority Program. A project prioritization process establishes those projects likely to receive funding. The Intermountain RTP will be integrated with the RTP's from the 15 other regions to form the Statewide Transportation Plan. Projects that are scheduled for implementation within the next six years are identified in the Statewide Transportation Improvement Program (STIP).

The Intermountain 2030 RTP planning process began with a review and update of the Regional Vision Statement, Values, and Goals, as established through the previous 2020 RTP process. An inventory of the existing transportation systems was conducted based on information provided in CDOT's Transportation Planning Data Set and other sources. Growth projections and socio-economic indicators were also derived through the inventory process and through input from the communities within the region. A Technical Advisory Committee (TAC) was formed to provide guidance and local knowledge throughout the process. The TAC consisted primarily of county and municipal staff members throughout the region; focus groups within the TAC included bicycle/pedestrian and Travel Demand Management/Intelligent Transportation Systems (TDM/ITS).

The transportation network was then divided into corridors, some of which contain several roadways. A vision for each of the corridors was developed, defining the functional characteristics and future needs as seen by the region. Goals and objectives to realize the visions were established, and strategies were identified to achieve these criteria. The purpose of the corridor visions is to ensure an integrated, consistent statewide vision for transportation in Colorado. The visions were used in this process as an initial screening tool for project identification; any proposed project that was inconsistent with the relevant corridor vision was dropped from further consideration.

Projects were then solicited from the counties, communities, and CDOT resident engineers. A list of nearly 160 projects, including highway, transit, bicycle/pedestrian, and TDM/ITS projects was compiled.

2030 Intermountain
 Regional Transportation Plan

Typically, transit projects would be financed through federal and local sources, rather than Regional Priority Program (RPP) dollars; however, transit projects that would be candidates for RPP funding were identified and included in subsequent project prioritization efforts. The 2030 Intermountain Regional Transit Element, completed as a separate process in June 2003, defines the plan for transit improvements in this region. Additionally, aviation projects were identified by a Technical Advisory Committee composed of airport management and CDOT Division of Aeronautics personnel. These aviation projects are expected to be funded from sources other than RPP allocations.

With the improvement projects identified, a process for prioritization across all travel modes was developed. The resultant prioritized list was then compared with the likely RPP funding allocation to establish a financially constrained plan. A complete description of this process is provided in subsequent sections of this report.

C. Public Involvement

Public involvement is an important element in the development of the regional plan, as the citizens will be impacted by any transportation improvements or modifications identified. The purpose of encouraging a "grass-roots" level of participation is threefold: to inform and educate the public, to solicit feedback and input, and to help build consensus within the region.

As a part of the Statewide Transportation Planning process, CDOT sponsored more than 100 meetings in smaller communities throughout the State in conjunction with the Department of Local Affairs (DOLA). The Northwest Colorado Council of Governments conducted 30 of the DOLA meetings in northwestern Colorado, including 17 meetings in towns located within the Intermountain TPR. These meetings were held between August 14 and October 28, 2003 with the elected councils and boards of jurisdiction for communities of under 5,000 population. The objectives of the DOLA meetings were to acquaint elected officials with the Statewide Transportation Planning process, to invite participation in the development of the plan, and to solicit comments. Comments were recorded from each meeting and categorized by topic. Major comment topics included CDOT planning process, safety, new construction needs, and current maintenance efforts. The comments were used to establish local needs and to develop a basis for the regional transportation planning process.

To provide opportunities for citizen input in the Regional Plan, four public open houses were held over the course of the planning process. The first open house was held on August 12, 2003 at the Garfield County Courthouse building in Glenwood Springs. At this open house, the results of the transportation system inventory were presented, as were the Regional Visions, Values, Goals and Objectives.

The second public open house was held on December 18, 2003 at the Summit County Community and Senior Center in Frisco. The focus of this open house was to present the corridor visions developed by the RPC.

2030 Intermountain Regional Transportation Plan

The third open house was held at the Minturn Town Center on August 26, 2004. This meeting was held in conjunction with CDOT; the joint purposes were to present the Draft Intermountain 2030 Regional Transportation Plan and the Draft Colorado Statewide Plan. The fourth open house was held at the Garfield County courthouse building in Glenwood Springs in September 2,2004 . The format and materials presented were the same as at the August $26^{\text {th }}$ open house.

Sign-in sheets and public comment summaries for all four open houses are included in Appendix A. Comments received in response to the open houses were considered in developing visions for each transportation corridor within the Region, as well as in identifying specific strategies to address regional concerns. Comments on the Draft 2030 RTP identified content in need of clarification or correction for the final draft report.

To ensure sufficient public notice, advertisements were placed in five newspapers: the Glenwood Post Independent, the Summit Daily, the Aspen Times Daily, the Vail Daily, and the Leadville Chronicle (a weekly publication). In addition, flyers were mailed to over 300 persons on a mailing list consisting of 2020 plan participants, current county and local government officials, and other interested community members. Notices, in both English and Spanish, were posted in prominent public places and distributed to Hispanic community organizations prior to each public open house.

D. Regional Values, Vision, and Goals

1. Values

Many of the communities within the Intermountain TPR are experiencing increasing pressure for growth. As new development occurs, increased demand on the transportation system impacts the quality of life for area residents and recreational visitors. Therefore, to provide a framework for long-range transportation planning, the RPC identified regional values on which to base an overall vision for the region, as well as goals for achieving that vision. Consistent with the 2020 plan, the following two questions were revisited with the RPC to reconfirm previous criteria and establish any needed modifications:

What is it about the region that commits you to its future?
 What is it about the region that you want to pass along to the next generation?

The Regional Values established by the RPC are as follows:

- Quality of life - clean air, clean water, vegetation, trees, wildlife, quiet
- Aesthetics - views, streams, sky, physical setting

2030 Intermountain Regional Transportation Plan

- Undeveloped land, open space, rural environment
- Access to recreation, access to public land
- Mobility - unconstricted/uncongested, link subregional areas
- Transportation options - bus, rail, highway, bicycle/pedestrian, local and regional airports, and other options
- Transportation safety, intermodal connections, major distribution/freight, Transportation Demand Management
- Communication links - telecommunications, link pedestrian and bike corridors
- Good paying jobs, healthy economy, year-round economy
- Diverse communities, diverse population, diverse economies
- Keep community "Main Street" character
- Sense of community, economic and social vitality, adequate and affordable housing, equity
- Adequate health, human and community services, and access to them
- Low crime, quality family life, quality education, cultural activities
- Affordable recreation, no stress, creativity
- Manageable population growth, integrated/coordinated regionally

2. Vision

Based on the above identified values, the following Vision Statement was adopted by the RPC:
"Our vision is for a region that is composed of physically distinct, unique, diverse communities interconnected by a multimodal transportation network that promotes preservation of the unique character of each community through open space buffering, while providing economic, cultural, environmental, and outdoor recreational benefits."

2030 Intermountain
 Regional Transportation Plan

3. Goals

The following Regional Goals were then established for the 2030 Intermountain Regional Transportation Plan:

Coordination of Planning

- Develop a regional perspective or vision for the geographic distribution of people, goods and services, and recreation
- Better coordinate land use and multimodal transportation planning
- Address existing and future needs/inadequacies

Funding

- Integrate funding of multimodal options
- Phase in useable increments
- Evaluate projects based on total costs of construction and maintenance through the year 2030
- Provide maximum flexibility for use of funds
- Tap into all potential funding sources

Environment

- Provide for efficient energy use
- Preserve land and critical environmental values
- Reflect direct and indirect environmental impacts (air quality, water quality, noise, etc.)
- Maximize system efficiency and minimize needless trips

Socioeconomic

- Minimize travel to attainable/accessible housing, medical, and overall community services
- Recognize the uniqueness of individual communities
- Provide equity of funding for services

2030 Intermountain Regional Transportation Plan

- Recognize diverse needs of transportation users
- Support/preserve existing transportation patterns that enhance economic development
- Consider social costs of transportation projects

Implementation

- Engage in an open and comprehensive public involvement process to prioritize and implement projects that meet the region's needs and goals.

2030 Intermountain

II. INVENTORY OF EXISTING TRANSPORTATION SUSTEM

An inventory of the components which comprise the existing transportation system within the Intermountain TPR was conducted to provide a basis for identifying the region's existing and future transportation needs. Because the Intermountain TPR is generally a rural region with isolated urban areas interspersed throughout, the roadway network is the primary means of travel. The inventory includes the following elements:

- Roadway System
- Rail System
- Transit System
- Bicycle/Pedestrian System
- Aviation System

The majority of the data contained in the inventory was provided by the Colorado Department of Transportation. Information contained in CDOT's Transportation Planning Data Set was augmented with data from other sources or with information provided by the communities within the Intermountain Region.

a. Roadway System

1. National Highway System

The Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA) established a National Highway System (NHS) to focus federal resources on roadways of national significance. NHS roadways provide for interstate travel, are important to national defense, facilitate international commerce, and connect to other modes of travel. As depicted on Figure 4, there are two NHS facilities within the Intermountain TPR:

- I-70: throughout the region
- State Highway 82: between Glenwood Springs and Aspen

2030 Intermountain Regional Transportation Plan

2. Functional Classification

Roadway functional classification is a description of the levels of mobility and access provided to its users. These two functions tend to compete; thus, as mobility increases, the level of access provided typically decreases. Conversely, as the need for mobility decreases, the ability to provide more access increases. The typical roadway functional classifications are defined as follows:

- Freeways: Freeways, which include interstate highways, primarily serve long distance travel needs between major communities and regions. Freeways provide the greatest mobility, but with strictly controlled access at grade-separated interchanges only.
- Arterials: Principal and minor arterial roads carry generally long distance traffic volumes between activity centers. Access is typically controlled, with at-grade signalized intersections spaced at a typical minimum 0.5 miles; unsignalized intersections are often restricted to right-turns only.
- Collectors: The purpose of collector roadways is to link local streets with the arterial system. The function of collectors is generally split equally between mobility and access.
- Local Roads: The primary function of local roads is to provide access to adjacent properties; mobility is a secondary consideration for these roads.

Figure 5 illustrates the functional classification of the state highways and other major roadways within the Intermountain TPR. As shown, I-70 is the only Interstate freeway. SH 82 from Glenwood Springs to Aspen, and SH 9 between Frisco and Breckenridge are principal arterials. State Highways 13, 133, 131, 24, 91, and 9 (except between Frisco and Breckenridge) are designated minor arterials. The remaining roadways shown are collectors. Table 1 provides a summary of the state highway centerline miles by functional classification.

Table 1. Summary of State Highway Centerline Miles

Functional Classification	Eagle	Garfield	Lake	Pitkin	Summit	Intermountain Total
Interstate (freeway)	59.6	65.6	0	0	24.1	149.3
Primary Arterial	7.2	17.7	0	16.5	10.1	51.5
Minor Arterial	44.5	50	38.4	19.8	62.5	215.2
Major Collector	32.8	42.5	23.7	19.4	0	118.4
Minor Collector	2.4	0	3.3	0	0	5.7
Source: CDOT Transportation Planning Data Set						

2030 Intermountain Regional Transportation Plan

3. Travel Demand

The CDOT Planning Data Set includes existing annual average daily traffic volumes (AADT), based on year 2001 data. Because these volumes represent an annual average, they tend to de-emphasize the peaking associated with the summer tourist or winter ski seasons. Figure 6 depicts the existing traffic volumes for roadways within the Intermountain TPR.

As shown, traffic volumes along I-70 currently range from about 9,800 AADT west of Parachute to nearly 29,000 AADT east of Dillon. SH 82 traffic volumes range from a low of approximately 1,300 AADT between Aspen and Twin Lakes (over Independence Pass) to over 20,000 AADT approaching Glenwood Springs. SH 9 currently carries about 19,000 AADT between Breckenridge and Frisco; between Breckenridge and Hoosier Pass, this roadway currently experiences about 4,600 AADT.

4. Volume to Capacity Ratios

The volume to capacity (V/C) ratio is a useful planning level measure of the levels of service experienced by roadway users. The V/C ratios for roadways within the Intermountain TPR were calculated based on existing traffic volumes and roadway capacities. The V/C ratios have been calculated for six categories; these may be further summarized into three groups:

- Below 0.80. This indicates that the roadway has generally sufficient capacity to accommodate the existing traffic volumes.
- Between 0.80 and 1.00. This indicates that the existing volumes are approaching the roadway capacity, and may imply some congestion and delays at peak times.
- Greater than or equal to 1.00 . The volume on these roadways currently exceeds the capacity, resulting in traffic congestion with motorist delays during peak times.

Figure 7 shows the V/C ratios on roadways within the Intermountain TPR. Roadways that currently have a V/C ratio greater than 0.8 include:

- SH 82, Glenwood Springs to Aspen.
- SH 6, Edwards/Avon area.
- SH 133, through Carbondale.
- SH 6, Dillon to Keystone.
- SH 9, Frisco to Breckenridge.
- SH 9, north of Silverthorne.

5. Historic Growth Patterns

Growth trends in traffic volumes from 1991 to 2001 are summarized for selected roadway links in Table 2. It can be seen that, In general, state highways throughout the Intermountain region experienced significant increases in traffic volumes over the 10 year period from 1991 to 2001.

Table 2. Historic Growth in Traffic on Selected State Highway Segments

Roadway Segment	$\begin{aligned} & 1991 \\ & \text { AADT } \end{aligned}$	$\begin{gathered} 1996 \\ \text { AADT } \end{gathered}$	$\begin{aligned} & 2001 \\ & \text { AADT } \end{aligned}$	Average Annual Growth Rate
1-70				
Parachute to Rifle	7,700	8,350	15,000	6.9 \%
Rifle to Glenwood Springs	11,600	14,400	21,500	6.4 \%
Glenwood Springs to Gypsum	8,250	11,100	14,100	5.5 \%
Gypsum to Wolcott	9,200	12,800	18,300	7.1 \%
Wolcott to Dowd Junction	10,400	15,400	21,800	7.7 \%
Dowd Junction to Copper Mountain	14,500	16,800	18,400	2.4 \%
Copper Mountain to Eisenhower Tunnel	19,800	24,400	28,600	3.8 \%
SH 24				
At Tennessee Pass	1,200	1,850	1,900	4.7 \%
South of Leadville	4,100	5,550	3,070	0.0 \%
SH 82				
Glenwood Springs to Carbondale	11,800	14,500	20,400	5.6 \%
Carbondale to Aspen	11,700	14,100	15,700	3.0 \%
Aspen to Twin Lakes	680	1,250	1,270	6.5 \%
SH 6				
Gypsum to Eagle	2,600	3,650	5,720	8.2 \%
Edwards to Minturn	7,000	10,200	11,400	5.0 \%
Dillon to Keystone	8,750	9,700	11,400	2.7 \%
SH 9				
Hoosier Pass to Breckenridge	3,300	4,950	4,590	3.4 \%
Breckenridge to Frisco	11,800	15,400	18,600	4.7 \%
North of Silverthorne	3,400	5,000	5,880	5.6 \%
SH 13				
North of Rifle	1,750	2,450	3,050	5.7 \%
SH 91				
Copper Mountain to Leadville	2,450	5,100	4,140	5.4 \%
SH 131				
North of Wolcott	650	1,100	1,390	7.9 \%
SH 133				
South of Carbondale	910	1,200	1,900	7.6 \%
SH 139				
Through Garfield County	590	710	360	-4.8 \%
SH 300				
West of SH 24	930	1,700	1,800	6.8 \%
SH 325				
North of Rifle	1,200	1,000	1,140	-0.1\%
Sources: $\begin{aligned} & \text { CDOT Transportation Planning Data Set, CDOT Accidents and Rates on State } \\ & \text { Highways, } 1991 \text { and } 1996\end{aligned}$				

2030 Intermountain Regional Transportation Plan

6. Vehicle-Miles of Travel

Table 3 summarizes the number of vehicle miles of travel (VMT) experienced per day on the state highways within the Intermountain TPR. The state highway system carries approximately five million VMT per day, approximately 60 percent of which occurs on I-70. Also shown are VMT data for truck traffic. Trucks represent approximately 10.6 percent of the VMT within the Intermountain region.

Table 3. Summary of Vehicle Miles of Travel on State Highways (Intermountain TPR)

Functional Classification	VMT	VMT Trucks	\% Trucks
Interstate (Freeway)	$3,050,518$	432,934	14.2%
Primary Arterial	969,271	37,878	3.9%
Minor Arterial	682,057	47,944	7.0%
Major Collector	356,779	19,984	5.6%
Minor Collector	12,744	558	4.4%
Region Total	$\mathbf{5 , 0 7 1 , 3 6 9}$	$\mathbf{5 3 9 , 2 9 8}$	$\mathbf{1 0 . 6} \%$

7. Roadway Surface Conditions

CDOT annually monitors roadway surface conditions on state highways in Colorado. Roadway segments are evaluated based on surface roughness and the amount of cracking and patching. Table 4 is a matrix used to categorize roadway segments in terms of "good", "fair", or "poor" surface condition.

Table 4. Roadway Surface Condition Matrix

Roughness	Patching/Cracking		
	Low	Medium	High
Low	Good	Good	Fair
Medium	Fair	Fair	Poor
High	Fair	Poor	Poor

A good surface condition corresponds to a remaining surface life of 11 years or more. A fair surface condition corresponds to a remaining surface life of six to 11 years, while a poor evaluation represents a remaining surface life of less than six years. Figure 8 identifies the surface conditions on the state highways within the Intermountain TPR.

2030 Intermountain Regional Transportation Plan

8. Accident History

CDOT maintains motor vehicle accident records for state highways in Colorado, and determines accident rates which are published in ACCIDENTS AND RATES ON STATE HIGHWAYS. These yearly reports categorize accidents as Property Damage Only (PDO), Injury, and Fatal accidents. Accident rates are calculated using the roadway segment length, the annual average daily traffic (AADT), and the number of accidents. Figure 9 graphically summarizes the data for the National Highway System within the Intermountain TPR for the years 1999, 2000, and 2001. Figure 10 provides similar information for the remaining state highways within the region. The statewide average accident rate of 2.21 (for all state highways) is shown for comparison purposes. It can be seen that the following roadway segments experienced motor vehicle accidents at rates higher than the statewide average:

SH 6	Rifle to New Castle Wolcott to Dowd Junction Dillon to Loveland Pass
SH 9	Park County Line to Frisco
I-70 F	(Eagle Spur Road)
SH 82	Glenwood Springs to Aspen
SH 131	Wolcott to Routt County Line
SH 139	Within Garfield County
SH 300	SH 24 to End
SH 325	SH 13 to End

These data should be reviewed carefully to determine the potential causes of elevated accident rates. It should be noted that SH 300, which only had two or three accidents per year, had a relatively high accident rate in 1999 and 2001. Because this roadway experiences very low traffic volumes, any accident occurrence tends to exaggerate the safety implications.

FELSBURG
HOLT \&
ULLEVIG
2030 Intermountain

Regional Transportation Plan | $\begin{array}{c}\text { Colorado } \\ \text { Total Accident Rates for 190 } \\ \text { State Highways }\end{array}$ |
| :--- |

2030 Intermountain Regional Transportation Plan

9. Bridges

Roadway bridges are an important element in the Intermountain regional highway system. Inadequate bridges can be the cause of both capacity and safety concerns. The Colorado Department of Transportation regularly inspects and evaluates all bridges on the state highway system. Two categories of inadequate bridges are as follows:

- Functionally Obsolete. These bridges may have acceptable load carrying capacity, but are inadequate due to physical restrictions (narrow width, restricted vertical clearance, limited sight distance, speed reducing curvature, or insufficient waterway clearance).
- Structurally Deficient. This designation includes bridges in advanced stages of deterioration, or which do not meet standard load carrying capacity requirements.

Table 5 summarizes those bridges in the Intermountain TPR that have been determined to be either functionally obsolete or structurally deficient. Figure 11 illustrates the locations of these inadequate bridges.

2030 Intermountain Regional Transportation Plan

Table 5. Functionally and Structurally Deficient Bridges
Functionally Deficient Bridges

Structure ID	Description	Roadway	Milepost	Year	Sufficiency Rating
F-09-A	EAGLE RIVER	US 6 ML	142.18	1933	65
F-09-H	EAGLE RIVER	US 6 ML	150.24	1933	49
F-13-C	MONTEZUMA ROAD WBND	US 6 ML	216.73	1995	95
F-11-T	EAGLE CREEK, RR, RDWY	US 24 ML	153.45	1940	66
H-11-D	CALIFORNIA GULCH	US 24 ML	178.29	1934	52
H-11-F	CALIFORNIA GULCH	US 24 ML	178.97	1934	62
F-07-AD	COUNTY ROAD 134	170 ML WBND	111.33	1969	93
F-07-AE	COUNTY ROAD 134	170 ML EBND	111.33	1969	93
F-07-AF	COUNTY ROAD 133	170 ML WBND	114.30	1970	92
F-07-AG	COUNTY ROAD 133	170 ML EBND	114.30	1970	91
F-07-AI	SH 82 ML	170 ML	116.38	1970	92
F-07-AX	HILLSIDE	170 ML EBND	120.14	1986	94
F-08-AA	ACCESS RD,GRIZZLY CREEK	170 ML WBND	121.13	1986	92
F-08-AC	RAMP TO GRIZZLY CREEK	170 ML WBND	121.30	1988	92
F-08-AD	BAIR RANCH RD, DRAW	170 ML WBND	128.36	1985	92
F-08-AE	BAIR RANCH RD, DRAW	170 ML EBND	128.35	1985	88
F-08-AF	HILLSIDE	170 ML EBND	121.82	1986	94
F-08-AI	ACCESS RD, COLORADO RVR	170 WBND	122.66	1989	92
F-08-AN	$170 \mathrm{ML}, \mathrm{COLO}$ RIVER,BP R	RAMP TO HNGNG LAKE	124.95	1992	92
F-08-AW	RAMP/GRIZZLY CREEK,DRAW	170 ML EBND	121.29	1988	92
$\begin{aligned} & \text { F-08-C } \\ & \text { MINOR } \end{aligned}$	BIKE PATH	170 ML	130.70	1983	86
F-10-AD	COUNTY ROAD	170 ML EBND	152.93	1971	93
F-10-N	COUNTY ROAD	170 ML WBND	160.49	1970	91
F-10-O	COUNTY ROAD	170 ML EBND	160.49	1970	91
F-10-U	FARM ACCESS ROAD	170 ML WBND	168.21	1971	91
F-10-V	FARM ACCESS ROAD	170 ML EBND	168.21	1971	91
F-10-X	COUNTY ROAD	170 ML WBND	152.93	1971	93
F-11-AB	US 6, RR, EAGLE RIVER \#	170 ML WBND	168.76	1972	77
F-11-AC	US 6, RR, EAGLE RIVER \#	170 ML EBND	168.76	1972	87
F-11-N	VAIL ROAD	170 ML WBND	176.03	1969	91

2030 Intermountain Regional Transportation Plan

Table 5. Functionally and Structurally Deficient Bridges (Continued)
Functionally Deficient Bridges

Structure ID	Description	Roadway	Milepost	Year	Sufficiency Rating
F-11-O	VAIL ROAD	170 ML EBND	176.03	1969	90
F-11-Q	RED SANDSTONE CREEK SR	170 FRONTAGE RD	174.98	1984	73
F-11-V	COUNTY ROAD	170 ML WBND	177.41	1969	92
F-11-X	COUNTY ROAD	170 ML EBND	177.41	1969	88
F-12-P	FARM ACCESS ROAD	170 ML WBND	207.05	1964	72
F-12-Q	FARM ACCESS ROAD	170 ML EBND	207.05	1964	72
F-12-R	SH 9 ML	170 ML WBND	205.42	1971	93
F-12-S	US 6 ML	170 ML EBND	205.42	1971	93
F-12-Y	ROAD, BLUE RIVER	170 ML EBND	205.14	1971	90
$\begin{aligned} & \text { F-13-s } \\ & \text { MINOR } \end{aligned}$	FOREST SERVICE ROAD	170 ML	211.05	1966	55
F-06-T	DRGW RR	170 SILT SPUR	0.08	1972	58
F-07-A	$170 \mathrm{ML}, \mathrm{COLORADO}$ RVR,RR	SH 82 ML	0.23	1953	50
H-09-B	CO RD, CASTLE CREEK	SH 82 ML	40.19	1961	61
$\begin{aligned} & \mathrm{H}-10-\mathrm{b} \\ & \text { MINOR } \end{aligned}$	LOST MAN CREEK	SH 82 ML	54.99	1935	53
F-10-B	EAGLE RIVER	SH 131 ML	0.07	1910	50
F-07-AS	170 ML	FARM ACCESS	106.95	1971	87
F-07-P	170 ML SR	$\begin{aligned} & \text { COUNTY ROAD } \\ & 129 \end{aligned}$	118.64	1966	88
Structurally Deficient Bridges					
F-10-E	EAGLE RIVER	US 6 ML	155.98	1933	38
G-11-F	DRGW RR	US 24 ML	171.02	1939	42
G-11-T	DRGW RR	US 24 ML	158.31	1941	73
F-08-D	DRGW RR SR	170 ML	133.80	1935	73
F-08-F	COLORADO RIVER SR	$\begin{aligned} & \text { I } 70 \text { SERVICE } \\ & \text { RD } \end{aligned}$	133.51	1935	59
G-09-A	SNOWMASS CREEK	SH 82 ML	26.66	1938	35
H-11-U	LAKE FORK CREEK	SH 300 ML	1.62	1954	60
Source: CDOT Transportation Planning Data Set, 2003					

2030 Intermountain Regional Transportation Plan

10. Special Roadway Corridors

Within the Intermountain TPR, there are roadway corridors which either serve special purposes or have a special designation. These corridors include scenic and historic byways, truck routes, and restricted roadway corridors (such as hazardous materials routes). The following sections describe these special roadway corridors.

a. Scenic and Historic Byways

Scenic and historic byways have been identified in an effort to preserve corridors which have exceptional scenic, historic, cultural, or ecologic resources. The Colorado Scenic and Historic Byways Commission has established criteria to evaluate roadway corridors throughout the state for consideration under this program. There are four such designated byways within in the Intermountain TPR:

- Dinosaur Diamond. This scenic byway forms a loop through western Colorado and Eastern Utah. SH 139 on the Dinosaur Diamond crosses through the Intermountain TPR over Douglas Pass at the westernmost end of Garfield County.
- West Elk Loop. SH 133 from Carbondale to the Pitkin County/Gunnison County line near McClure Pass is on the West Elk Loop.
- Top of the Rockies. This scenic and historic byway consists of three state highways within the Intermountain TPR: SH 82 from Twin Lakes to SH 24, SH 24 from I-70 at Minturn over Tennessee Pass to SH 82 (near Granite), and SH 91 from I-70 at Copper Mountain over Fremont Pass to SH 24 at Leadville.
- Colorado River Headwaters. A portion of this scenic byway follows Trough Road from the Eagle County/Grand County line to SH 131 at State Bridge.

Figure 12 depicts the scenic and historic byways in the Intermountain TPR.

b. Truck Routes

Truck traffic is an important component of the distribution of goods, both on a regional and national basis. I-70 is the primary route for freight movements through the Intermountain TPR, although several other state highways experience a high percentage of truck traffic. Figure 13 shows the highway segments that currently have a greater percentage of trucks than the statewide average for state highways.

Table 3, previously presented, compares the truck traffic to the total traffic within the Intermountain TPR based on existing vehicle miles of travel (VMT). As shown, the highest percentage of truck VMT is on the interstate system (I-70), where trucks accounted for approximately 14.2 percent of the total VMT. Overall, truck traffic represents about 10.6 percent of the total VMT within the Intermountain TPR.

2030 Intermountain Regional Transportation Plan

The demand for freight transportation within and through the Intermountain TPR is expected to increase over time. To help planners identify future capacity improvement needs, the U.S. Department of Transportation forecasts freight activity for the year 2020. Based on these projections, highway freight movements would be expected to increase by approximately 140 percent by the year 2030. This increase is generally proportionate to the anticipated growth in traffic levels; thus, the percentage of truck traffic would remain stable. However, as a part of the Intermountain 2030 Transportation Plan, any proposed improvement project would need to consider impacts to freight movements as specified in the Regional Values.

c. Hazardous Materials Routes

The transport of hazardous and nuclear materials is restricted to a nationwide network of designated routes. Figure 14 illustrates the designated hazardous materials routes within the Intermountain TPR; there are no designated nuclear materials routes within the region.

I-70 is the designated east-west route for hazardous materials, with the exception of the Eisenhower Tunnel. Trucks carrying such materials are required to bypass this section of I-70 via US 6 over Loveland Pass. When Loveland Pass is closed due to weather, convoys of hazardous materials carriers are escorted through the Eisenhower Tunnel, with general traffic being stopped periodically for this purpose.

Other hazardous materials routes include SH 139, SH 13, SH 9 (I-70 at Silverthorne to the Summit County/Grand County line), SH 91 (I-70 at Copper Mountain to Leadville) and SH 24 (Leadville to Lake County/Chaffee County line).

B. Rail System

The rail system within the Intermountain TPR, which provides for the movement of both freight and passengers, is depicted on Figure 15. There are currently four railroad entities in the region:

- Union Pacific Railroad. The UP operates approximately 285 miles of track within the region. The line which follows the Colorado River is currently active, and carries approximately 18 freight trains per day. The Tennessee Pass line (Leadville to Dotsero) is inactive at this time.
- AMTRAK. Passenger service is provided along the active UPRR line between Denver and Salt Lake City, Utah, with twice-daily train stops in Glenwood Springs (one eastbound, one westbound). The Ski Train also utilizes this line; during the ski season it carries two Ski Trains per day.
- Roaring Fork Transit Authority. RFTA currently owns approximately 42 miles of track along the Roaring Fork River valley between Glenwood Springs and Aspen; however, this track is not currently in use.

2030 Intermountain Regional Transportation Plan

- Leadville, Colorado \& Southern Railroad. This is a seasonal tourist operation which generally follows the Arkansas River valley between Leadville and Fremont Pass.

Information on the condition of the tracks on the active UPRR/Amtrack line was obtained from the Union Pacific Railroad Condensed Profiles for the Glenwood Springs Subdivision (updated in 2001) as follows:

- Glen to Dotsero - The rail is in good condition. The ties were replaced in 2000, and are of either wood or concrete.
- Dotsero to Rifle - The rail is rated fair to good condition. The ties were replaced in the mid- to -late 1980s. The UPRR is pursuing an aggressive program of replacing wooden ties with concrete.
- \quad Rifle to DeBeque - The rail is in good condition. The ties were replaced in the mid- to late 1980s.

The Federal Railroad Administration (FRA) maintains accident records for railroad/highway crossings throughout the United States. An inventory of railroad grade crossing accidents for the Intermountain TPR was compiled from the FRA data. Table 6 summarizes five years of accident data, beginning January 1, 1999 through December 31, 2003. Over the five year period, there were a total of five accidents, including two fatal accidents at railroad grade crossings. All reported accidents occurred in Garfield County, where the active UPRR/AMTRACK rail service coincides with the more populated areas along the I-70 corridor.

Table 6. Railroad/Highway Grade Crossing Accidents (1999-2003)

Location	Number of Accidents						$\begin{array}{c}\text { Total } \\ \text { Accidents }\end{array}$	$\begin{array}{c}\text { Injury } \\ \text { Accidents }\end{array}$
	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 0}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 2}$	$\mathbf{2 0 0 3}$			
Accidents								

2030 Intermountain Regional Transportation Plan

The safety of at-grade railroad crossings is a major concern to both the railroad and highway entities. To reduce the accident potential at railroad grade crossings, a series of protective traffic control devices may be used. These devices range from signing to flashing beacons or signals and automated gates. Where train movements coincide with high traffic volumes, a gradeseparated crossing may be indicated. The Colorado Public Utilities Commission specifies criteria under which grade separated crossings are considered; a key measure is the exposure factor (the number of train movements times the average daily vehicular crossing volume). Exposure factors of 75,000 or higher indicate a need for grade separation. At low volume crossings where reasonable alternative routes exist, an alternative is to abandon, or close, the crossing. The UPRR has pursued an aggressive policy of closing such redundant crossings.

Based on the Colorado PUC criteria, the US 6 grade crossing in Rifle could be a candidate for grade separation (exposure factor $=4,300$ AADT $\times 20$ train movements $=86,000$).

C. Transit System

With increasing pressures for growth experienced throughout the region, increases in travel demand have led to congested traffic conditions in developed areas, activity centers, and resorts. Public transportation systems represent an important element in reducing the number of private vehicles on the roadway system, thereby helping to reduce the impacts of continued growth. The Intermountain TPR is currently served by nine primary transit agencies:

- Avon/Beaver Creek Transit. This service consists of two components: the Avon service and the Beaver Creek Resort service, both managed by the Town of Avon. Transfer points allow access to the regional transit system (ECO). The Avon service operates two fixed routes during the summer season, which provide for employee transportation as well as local resident needs. During the winter ski season, a third route provides transportation between lodging and the resorts. The Beaver Creek Resort transit service provides year-round transportation between the parking lots along US 6 and Beaver Creek Village.
- Eagle County Regional Transportation Authority (ECO). ECO Transit was established in 1996 to provide regional connection between the communities of Avon, Beaver Creek, Dotsero, Eagle, Edwards, Gypsum, Leadville, Minturn, Red Cliff, and Vail. Bus service is provided year-round, with increased frequency during the winter ski season. Free transfers to the local transit systems in Avon and Vail are available. The Vail Transportation Center provides a convenient transfer location to intercity bus transportation (Greyhound) and to airport shuttle services.
- Breckenridge Ski Resort. Funded by the Breckenridge Ski Area, this free circulator transit service operates year-round within the Breckenridge town limits and ski base areas.

2030 Intermountain Regional Transportation Plan

- Colorado Mountain College. The CMC Senior/Disabled Transit, commonly known as The Traveler, primarily serves low income elderly and disabled residents of Garfield County. The Traveler is wheelchair accessible, and provides for door-to-door, demandresponse, and driver assisted transportation needs.
- Ride Glenwood Springs. This local transit service includes two fixed-routes within Glenwood Springs, and provides connections to the Roaring Fork Transportation Authority services.
- Roaring Fork Transportation Authority. RFTA operates year-round transportation services in Pitkin County, as well as parts of Garfield and Eagle Counties. Services include free buses in Aspen, fare commuter buses (Down Valley Commuter Service) between Aspen, Glenwood Springs, and Rifle, and local service in Glenwood Springs. In addition, RFTA offers seasonal service both summer and winter, including transit to ski areas and special events.
- Summit Stage. Summit Stage provides free public transportation throughout Summit County, connecting the communities of Breckenridge, Keystone, Copper Mountain, Frisco, Dillon, and Silverthorne. Connection to Greyhound intercity bus service is available at Frisco.
- Snowmass Village Shuttle. The Shuttle is a free service provided by the Town of Snowmass Village. Transit services include fixed-route, demand response, and route deviation year-round, with the highest ridership occurring during the winter ski season.
- Town of Vail. The Town of Vail provides fixed-route bus service within Vail, and is free to riders. Connections to intercity bus routes are available at the Vail Transportation Center.

Figure 16 illustrates the areas served by these agencies. In addition to the above transit service providers, Greyhound Bus Lines provides for intercity transit needs. Three daily departures each from Denver and Grand Junction serve the I-70 corridor communities of Silverthorne, Vail, Frisco, Eagle, Glenwood Springs, Rifle, and Parachute. Several private shuttle bus companies also provide transportation in the Intermountain TPR. A more complete description of the existing transit service in the region is available in the 2030 INTERMOUNTAIN REGIONAL TRANSIT ELEMENT, prepared by LSC Transportation Consultants, Inc., June 10, 2003.

2030 Intermountain Regional Transportation Plan

D. Bicycle/Pedestrian System

The Intermountain TPR has extensive bicycle and pedestrian facilities serving primarily recreational needs, although there is a significant commuter component to non-motorized travel in the region. The Colorado Department of Transportation has identified the state highways suitable for use as bicycle/pedestrian routes. Figure 17 depicts these on-system routes, and identifies those segments of highway where bicycles are prohibited. Typically, shoulder widths in excess of four feet are preferable for bicycle use; this criterion is also summarized on the figure.

In addition to the on-system facilities, there are numerous existing paved bicycle and pedestrian trails maintained by the counties and municipalities within the Region. A network of such trails extends from Breckenridge to the Avon area over Vail Pass. The Mineral Belt Trail is a 12.5 mile National Recreation Trail that loops the City of Leadville, providing scenic and historic interest for recreational users. The 1990 Aspen Area Trails Master Plan identifies existing and planned pedestrian/bikeways in Pitkin County. The Rio Grande Trail follows the Roaring Fork River from Aspen to Basalt. The 2001 Eagle Valley Regional Trails Plan envisions a paved arterial core trail (the Eagle Valley Trail) that will span Eagle County from Vail Pass to Glenwood Canyon. Many of the ski resorts provide trail networks during the summer months. Together, the existing and planned components will provide non-motorized transportation alternatives to the many recreational opportunities in the region.

ع. Aviation System

Regional aviation needs include tourism, air freight, and connection to major airports outside the region. The high altitudes, mountainous terrain, and severe weather conditions can pose special challenges to air travel in the Intermountain TPR. There are five airports currently operating in the region, as shown on Figure 18. These airports include:

- Eagle County Regional Airport
- Garfield County Regional Airport
- Aspen/Pitkin County Airport
- Lake County Airport
- Glenwood Springs Municipal Airport

In addition to general aviation use, scheduled commercial jet service is available at Eagle County and Aspen/Pitkin County Regional Airports. These two facilities are designated Commercial Service Use Airports, meaning that scheduled passenger airline service is provided, with annual enplanements of at least 2,500 passengers. The remaining three airports are considered general aviation airports, and are typically used by smaller aircraft.

The Colorado Department of Transportation Division of Aeronautics maintains enplanement (passenger boarding) data for commercial service airports in Colorado. Table 7 shows historic enplanement data for Eagle County and Aspen/Pitkin County Regional Airports.

Table 7. Historic Commercial Passenger Service Enplanements

Airport	Annual Enplanements					
	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$	$\mathbf{1 9 9 7}$	$\mathbf{1 9 9 8}$	Growth Rate
Eagle County	62,347	77,167	109,118	164,415	173,041	22.7%
Aspen/Pitkin County	251,533	204,907	206,672	217,343	251,448	0.0%
Intermountain Total	$\mathbf{3 1 3 , 8 8 0}$	$\mathbf{2 8 2 , 0 7 4}$	$\mathbf{3 1 5 , 7 9 0}$	$\mathbf{3 8 1 , 7 5 8}$	$\mathbf{4 2 4 , 4 8 9}$	$\mathbf{6 . 2} \%$
Source: CDOT Division of Aeronautics						

As indicated above, passenger enplanements at the Eagle County Regional Airport have increased at an average rate of approximately 23 percent per year from 1994 to 1998.
Enplanements at the Aspen/Pitkin County Regional Airport, however, have generally remained static over the same period. On average, enplanements have increased at a rate of about six percent per year in the Intermountain TPR.

The COLORADO STATEWIDE AIRPORT INVENTORY AND IMPLEMENTATION PLAN, prepared by Wilber Smith Associates, Inc., October 2000 contains historic general aviation operational data for the airports in Colorado. Table 8 summarizes these data for the Intermountain TPR. It can be seen that general aviation operations have increased at an annual rate of about 4.3 percent.

Table 8. Historic Annual General Aviation Operations

Airport	Annual GA Operations					Av. Annual Growth Rate
	1994	1995	1996	1997	1998	
Eagle County	14,600	23,350	18,282	22,080	21,920	8.5 \%
Garfield County	7,240	16,662	16,006	16,440	20,680	23.4 \%
Aspen/Pitkin County	39,904	35,078	33,717	35,157	34,794	-2.7\%
Lake County	5,532	5,532	8,000	8,000	8,000	7.7 \%
Glenwood Springs	23,100	25,300	18,210	26,900	26,900	3.1 \%
Intermountain Total	90,376	105,922	94,215	108,577	111,664	4.3 \%
Source: Colorado Statewide Airport Inventory and Implementation Plan, 2000.						

2030 Intermountain Regional Transportation Plan

F. Intermodal Connections

The Intermountain TPR has numerous opportunities for multi-modal and intermodal travel. Tourists may arrive by train or plane, and then use local transit and pedestrian/bicycle facilities in addition to rental vehicle options. Residents of the region may use a combination of private automobile, transit, or pedestrian/bicycle modes. Freight goods may arrive by train and be distributed throughout the region via truck.

Intermodal facilities include air freight/passenger terminals, rail/truck transfer facilities, intercity/local transit links, and park-n-ride lots. Figure 19 shows the intermodal connections within the region.

2030 Intermountain Regional Transportation Plan

III. $\varepsilon N V I R O N M E N T A L$ PROFIL ε

In addition to natural resources such as air, water, and wildlife, the environment refers to the entire context of an area, both natural and human. Human environmental factors include communities, historic sites, cultural facilities, and recreational facilities. The Colorado Department of Transportation's environmental ethic states that "CDOT will support and enhance efforts to protect the environment and quality of life for all of Colorado's citizens in the pursuit of the best transportation systems and services possible".

Any modification to the state highway system is required to undergo environmental studies as part of the National Environmental Protection Act (NEPA). At the beginning of the planning process, the RPC established regional goals which included the preservation of land and critical environmental values. The RPC also addressed specific environmental impacts, such as air quality, water quality, and noise. To further emphasize the importance of environmental issues to the Intermountain region, subsequent project evaluation criteria included environmental factors. This section provides a brief overview of the general environmental concerns in the Intermountain TPR.

a. air Quality

Air quality is typically considered the most important measure associated with transportation impacts to the environment. With the passage of the Clear Air Act in 1991, areas which violate the National Ambient Air Quality Standards are given non-attainment status. PM 10 refers to particulate matter less than or equal to 10 microns in diameter, and may be composed of a wide range of liquid and solid pollutants. In past years, the City of Aspen was identified as a PM10 non-attainment area. Recently, however, this designation has been removed, due to aggressive and successful measures in reducing air pollution.

Other jurisdictions in the Intermountain TPR with air quality mitigation programs include the Town of Vail, Eagle, Pitkin, and Summit Counties. There are currently no non-attainment areas in the Intermountain TPR.

B. Water Quality

There are 23 rivers, creeks, and tributaries within the Intermountain region, as well as numerous lakes, floodplains, and wetlands. The existing transportation system has numerous crossings of these riparian zones. A portion of the Colorado River drainage basis lies within the Intermountain TPR. This basin has agreements in place for the protection of endangered fish, and portions of the river are on the State's imperiled list. Protection of these waters must be considered in any transportation improvement project through a number of regulatory reviews and permits.

2030 Intermountain Regional Transportation Plan

With the passage of the Federal Water Pollution Control Act in 1972, the Environmental Protection Agency (EPA) created the national Pollution Discharge Elimination System (NPDES), later amended to include the Clean Water Act (CWA) and storm water discharge standards. The CWA provides the EPA the authority to restore and maintain the chemical, physical, and biological integrity of the nation's waters, including lakes, wetland, streams and other aquatic habitat. Although there are no communities in the Intermountain TPR large enough to fall within the population criteria for the NPDES for storm water discharges, other federal or state permits may apply to transportation projects:

- Any project using a dewatering element during construction, or any project which disturbs five acres or more during construction, will need a 402 permit.
- Projects involving the discharge of dredged or fill materials into waters of the United States, the Army Corps of Engineers will evaluate the proposed activity under Section 404 (b)(1) of the Clean Water Act of 1977.
- The discharge of pollutants into navigable waters requires a Section 401 clearance.

C. Noise

Residential land uses and other sensitive uses such as schools, hospitals, or churches are potential noise receptors. In general, such uses should not be subjected to exterior noises of greater than 67 decibels, which coincides with the average sound of roadway traffic at a distance of 100 feet. As existing transportation corridors are widened, or as new facilities are planned, sensitive receptors need to be identified, and the need or feasibility for noise mitigation measures addressed.

Noise related to transportation is a major concern in the Intermountain TPR. Communities along the I-70 corridor experience ever-increasing levels of freeway traffic noise, and sound walls have been constructed in problem areas and are being considered at additional locations.

All federal aid projects must include an assessment of highway generated noise in compliance with Federal Highway Administration (FHWA) noise abatement criteria. In general, vehicle noise is not an issue on low speed facilities unless steep grades or a high percentage of trucks exist. Rural highways, roads, non-urban and small urban municipal streets typically have a maximum noise influence area of 200 feet on either side of the roadway centerline. Rural interstate freeways typically have a noise influence area of 300 feet or less, either side of the centerline.

Aircraft operations at Aspen/Pitkin County and Eagle County Regional Airports contribute to exterior noise levels. Military or joint-use airports are required under military regulations to conduct an Air Installation Compatibility Use Zone Study, which identifies the noise footprint associated with airport operations. Airports with regularly scheduled commercial airline service are required to conduct a similar study under Federal Aviation Administration (FAA) regulations. These studies may be used by planners to assess airport noise impacts on the surrounding communities.

2030 Intermountain Regional Transportation Plan

D. Threatened or Endangered Species

The extinction of any species, whether plant or animal, is an irretrievable loss of our national heritage. The Endangered Species Act of 1973 (ESA) provides protection of species that have been determined to be threatened or endangered. Each transportation project must examine possible effects to threatened or endangered species. Below is a list of federal and state agencies and programs that should be consulted during a threatened or endangered species evaluation. Because the lists of species can be extensive and vary by location, each transportation project must evaluate threatened and endangered species on a case-by-case basis.

Federal Agencies

- The U.S. Fish and Wildlife Service (USFWS) maintains a list of plants and animals species that are considered federally threatened or endangered and are afforded protection under the ESA. The USFWS also tracks candidate species, which are not yet included on the list. A written request must be submitted to the USFWS as to which threatened and endangered species occur in each project area; this communication should be documented. Any migratory birds that might use habitat in the project area should be identified. Any potential effects to these species should be formally communicated and discussed with the USFWS, in accordance with the requirements of the ESA and Migratory Bird Treaty Act.
- The U.S. Forest Service (USFS) should also be consulted for each project because much of the Intermountain region occurs on USFS land. The USFS maintains a list of species that are determined to be sensitive on USFS operated land. The USFS Sensitive Species that have potential to occur on USFS should be determined for each project occurring on USFS land.
- Similar to the USFS, the Bureau of Land Management (BLM) also maintains a list of sensitive species that occur on BLM maintained land. When a transportation project occurs on BLM maintained land, they should be consulted to determine which species that have potential to occur in the project area.

State Agencies and Programs

- The Colorado Division of Wildlife (CDOW) collects data for many large species, such as the bald eagle, elk, deer, etc. They also maintain a list of State Threatened or Endangered Species, as well as Species of Special Concern. Communications with CDOW regarding the likelihood of occurrence in each project area should be performed and documented.
- The Colorado Natural Heritage Program (CNHP) tracks many sensitive species and habitats throughout Colorado. A query of the CNHP database should be performed to determine if any sensitive habitats occur in each project area.

2030 Intermountain Regional Transportation Plan

Once information from the above sources has been reviewed, documented, and described, special consideration should be given to potential effects to these species or habitats from each project. This can include avoidance of areas, minimization of effect, and mitigation measures.

If threatened or endangered species have the likelihood to be affected by the project, additional requirements for compliance with the ESA may be required. Examples include informal or formal consultation with the USFWS, preparation of additional assessment documents, and Section 10 take permits. These efforts should be considered during the planning phases of each transportation project.

ع. Public Lands

The Intermountain TPR contains large areas of public lands, including National Forest, Bureau of Land Management, and State lands. The Arapahoe, White River, and San Isabel National Forests cover approximately half of the TPR. Table 9 summarizes the amount of public lands within the region.

Table 9. Intermountain TPR Public Lands

Jurisdiction	Area (Square Miles)
U.S. Forest Service	3,221
Bureau of Land Management	1,421
Department of Defense	84
State of Colorado	48
U.S. Fish and Wildlife Services	5
Total	$\mathbf{4 , 7 7 9}$

The Intermountain region public lands include six designated wilderness areas, where roads and other development are prohibited. These wilderness areas are summarized in Table 10.

Table 10. Intermountain TPR Wilderness Areas

Wilderness Area	Location
Flattops	Northern Garfield County
Hunter-Fryingpan	Pitkin County
Maroon Bells - Snowmass	Pitkin County
Holy Cross	Eagle County
Mount Massive	Lake County
Collegiate Peaks	Pitkin County

2030 Intermountain Regional Transportation Plan

F. Historicallarchaeological Sites

The Colorado State Register of Historic Places and the National Register of Historic Properties list sites, areas, and communities of historic or archaeological significance. Table 11 summarizes such identified sites in the Intermountain TPR. Transportation impacts should be considered relative to these locations, as well as any other sites being considered for inclusion in the historic registers.

Table 11. State and National Historic and Archaeological Sites

Site	Location	County
Basalt archaeological site (prehistoric campsite)	Basalt	Eagle
Dotsero Bridge (1935)	Dotsero	Eagle
Eagle River Bridge (1933)	Eagle	Eagle
First Evangelical Lutheran Church (1890)	Gypsum	Eagle
Waterwheel (ca 1930)	McCoy	Eagle
Yarmony archaeological site (prehistoric campsite)	Radium	Eagle
Camp Hale (ca WWII)	Red Cliff	Eagle
Red Cliff Bridge (1940)	Red Cliff	Eagle
State Bridge (1890)	State Bridge	Eagle
Woods Lake Resort (ca 1900)	Thomasville	Eagle
Wolcott Bridge (1916)	Wolcott	Eagle
Battlement Mesa Schoolhouse	Battlement Mesa	Garfield
Missouri Heights School (1917)	Carbondale	Garfield
Satank Bridge (1900)	Carbondale	Garfield
Canyon Creek Schoolhouse (1907)	Glenwood Springs	Garfield
Cardiff Coke Ovens (1888)	Glenwood Springs	Garfield
Citizens National Bank Building (1913)	Glenwood Springs	Garfield
Earnest Ranch (ca 1920)	Glenwood Springs	Garfield
Glenwood Springs Hydroelectric Plant (1888)	Glenwood Springs	Garfield
Hotel Colorado (1892)	Glenwood Springs	Garfield
Shelton-Holloway House (1912)	Glenwood Springs	Garfield
South Canon Bridge (1915)	Glenwood Springs	Garfield
Starr Manor (1901)	Glenwood Springs	Garfield
Sumers Lodge (1935)	Glenwood Springs	Garfield
Edward T. Taylor House (1904)	Rifle	Garfield
Havemeyer-Willcox Canal Pumphouse (1902)	Rifle	Garfield
Rifle Bridge (1909)	Rifle	Garfield
Rifle Post Office (1940)	Leadville	Lake
Derry Mining Camp Site (1906)	Leadville	Lake
Dexter Cabin (1879)	Leadville	Lake
Hayden Ranch Headquarters (1872)	Leadville	Lake
Healy House (1878)	Leadville	Lake
Leadville Historic District (ca 1860-1888)	Twin Lakes Lakes	Lake
Leadville National Fish Hatchery (1889)	Lake	
Interlaken Resort District (1883-1900)	Lake	
Twin lakes District (ca 1890)	Flle	

Table 11. State and National Historic and Archaeological Sites (Continued)

Site	Location	County
Ashcroft Town Site (ca 1880)	Ashcroft	Pitkin
Armory Hall/Fraternal Hall (1892)	Aspen	Pitkin
Boat Tow (1937)	Aspen	Pitkin
Bowles-Cooley House (1889)	Aspen	Pitkin
Matthew Callahan Log Cabin (ca 1880)	Aspen	Pitkin
Collins Block-Aspen Lumber \& Supply (ca 1893)	Aspen	Pitkin
Dixon-Markle House (ca 1888)	Aspen	Pitkin
D.E. Frantz House (1909)	Aspen	Pitkin
Samuel L. Hallet House (ca 1885)	Aspen	Pitkin
Holden Mining and Smelting Co. (ca 1891)	Aspen	Pitkin
Hotel Jerome (1889)	Aspen	Pitkin
Hyman-Brand Building (1891)	Aspen	Pitkin
Thomas Hynes House (1885)	Aspen	Pitkin
La Fave Block (1888)	Aspen	Pitkin
Maroon Creek Bridge (1888)	Aspen	Pitkin
New Brick/Brick Saloon/Red Onion (1892)	Aspen	Pitkin
Pitkin County Courthouse (1890)	Aspen	Pitkin
Riede's City Bakery (1885)	Aspen	Pitkin
Judge Shaw House/Newberry House (ca 1890)	Aspen	Pitkin
Sheely Bridge (1911)	Aspen	Pitkin
Shilling-Lamb House (ca 1890)	Aspen	Pitkin
Smith-Elisha House (ca 1890)	Aspen	Pitkin
Smuggler Mine (1879)	Aspen	Pitkin
Ute Cemetery (1880)	Aspen	Pitkin
Davis Waite House (1888)	Aspen	Pitkin
Henry Webber House/ Pioneer Park (1885)	Aspen	Pitkin
Wheeler Opera House (1898)	Aspen	Pitkin
Wheeler-Stallard House (1888)	Aspen	Pitkin
Independence \& Independence Mill Site (1881)	Independence	Pitkin
Osgood Castle-Cleveholm (1903)	Redstone	Pitkin
Osgood Gamekeepers Lodge (1901)	Redstone	Pitkin
Osgood-Kuhnhausen House (1901)	Redstone	Pitkin
Redstone Coke Oven Historic District (1899)	Redstone	Pitkin
Redstone Historic District (1892-1903)	Redstone	Pitkin
Redstone Inn (1902)	Redstone	Pitkin
Boreas Railroad Station Site (1882)	Breckenridge	Summit
Breckenridge Historic District (1859)	Breckenridge	Summit
Porcupine Peak Site (prehistoric)	Dillon	Summit
Frisco Schoolhouse (ca 1890)	Frisco	Summit
Wildhacks Grocery Store-Post Office (1920)	Frisco	Summit
Slate Creek Bridge (1924)	Slate Creek	Summit
Source: Colorado Office of Archaeology and Historic Preservation.		

The Intermountain TPR falls within the historic range of the Ute Nation, and may be a part of historic ranges for other native nations as well.

2030 Intermountain Regional Transportation Plan

G. Hazardous Materials

Within the five county Intermountain TPR, the potential exists for finding hazardous materials during the construction of transportation improvements. Hazardous materials are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). CERCLA is more commonly known as Superfund. A number of CERCLIS (Comprehensive Environmental Response, Compensation, and Liability Information System) sites have been previously identified in the Intermountain Region. Table 12 summarizes the existing CERCLIS sites in the Intermountain region.

Table 12. CERCLIS Sites

Site Name	City	County
Eagle Mine	Minturn/Red Cliff	Eagle
Reno Auto Body	Basalt	Eagle
Camp Hale	Unincorporated	Eagle
Anvil Points	Rifle	Garfield
Carbondale PCB's	Carbondale	Garfield
Mountain Valley PCE	Carbondale	Garfield
New Caste H2S	New Castle	Garfield
Rifle Pond Site	Rifle	Garfield
California Gulch	Leadville	Lake
Climax Mine	Climax	Lake/Summit
Leadville Drums	Leadville	Lake
Castle Creek Road Site	Aspen	Pitkin
Smuggler Mountain	Aspen	Pitkin
French Gulch	Breckenridge	Summit
Frisco EDB	Frisco	Summit
Jessie Mine and Mill	Breckenridge	Summit
Royal Tiger Mine and Mill	Unincorporated	Summit
Silverthorne Mercaptan	Silverthorne	Summit
Source:U.S. Environmental Protection Agency Superfund Information System		

The region's transportation planners should be aware of the potential for hazardous material sites, and conduct investigations when appropriate. Examples of land uses often associated with such materials include industrial/commercial activities (including mining), active or capped oil/gas drilling operations, railroad facilities, and agricultural areas where large amounts of fertilizer or pesticides have been used.

2030 Intermountain
 Regional Transportation Plan

IV. REGIONaL GROWTH

Travel demand is dependent on the socio-economic characteristics of the region's population and employment. The need for improvements to existing transportation infrastructure is directly related to growth trends in these measures. The following sections summarize the existing and projected socio-economic profile of the Intermountain TPR, and identify the impacts of projected growth on future travel demand.

a. Existing Socio-Economic Profile

1. Population

Table 13 summarizes the historic growth in population in the Intermountain TPR, based on 1990 and 2000 data from the U.S. Census Bureau. As shown, the region experienced an average growth in population of approximately 5.2 percent. Summit County experienced the highest rate of population growth, at 10.5 percent, while Pitkin County experienced the lowest, at 1.6 percent.

Table 13. Historic Population Growth, 1990 to 2000

County	1990 Total Population	2000 Total Population	Annual Growth Rate
Eagle	21,928	41,659	6.6%
Garfield	29,974	43,791	3.9%
Lake	6,007	7,812	2.7%
Pitkin	12,661	14,872	1.6%
Summit	8,673	23,548	10.5%
Region Total	$\mathbf{7 9 , 2 4 3}$	$\mathbf{1 3 1 , 6 8 2}$	$\mathbf{5 . 2} \%$
Source: 1990 and 2000 U.S. Census			

As indicated above, the region's total population in 1990 was about 79,243. By the year 2000 (the most recent census), the total population of the Intermountain TPR was approximately 131,682 persons, a growth of about 66 percent over the ten year period. In comparison, the Colorado statewide growth in population was approximately 31 percent over the same ten year period.

Figure 20 graphically depicts the communities within the Intermountain TPR by population size. As shown, the larger communities include Glenwood Springs $(8,301)$, Rifle $(7,349)$, Aspen $(6,439)$, Avon $(6,081)$, Carbondale $(5,565)$, and Vail $(4,832)$.

2030 Intermountain Regional Transportation Plan

2. Demographic Characteristics

Relevant demographic characteristics of the Intermountain TPR include per capita and household income, average household size, and age of the population. Table 14 summarizes these data by county for the region.

Table 14. Summary of Selected Demographic Characteristics by County

Characteristic	Eagle	Garfield	Lake	Pitkin	Summit
Per Capita Income	$\$ 32,011$	$\$ 21,341$	$\$ 18,524$	$\$ 40,811$	$\$ 28,676$
Median Household Income	$\$ 62,682$	$\$ 47,016$	$\$ 37,691$	$\$ 59,375$	$\$ 56,587$
Average Household Population	2.73	2.65	2.59	2.14	2.48
Population under 18 Years	23.5%	27.1%	26.9%	16.7%	17.4%
Population 65 Years or Older	3.0%	8.8%	6.6%	6.8%	3.3%
Source: 2000 U.S. Census					

As shown, Pitkin County has the highest per capita income, while Eagle County has the highest median household income. Eagle County also has the highest average household population. Garfield County has the highest percentage of persons both under 18 and over 65 years of age.

The 1994 Federal Actions to Address Environmental Justice in Minority and Low Income Populations (Executive Order 12898) was enacted to ensure full and fair participation of potentially impacted communities in transportation decisions. The concept of environmental justice is to avoid, minimize, or mitigate disproportionate adverse impacts on minority or lowincome populations. Table 15 summarizes the population by percent race for the counties within the Intermountain TPR.

Table 15. Population by Race

Race	Eagle	Garfield	Lake	Pitkin	Summit
White	74.2%	81.0%	61.6%	90.6%	86.7%
Hispanic/Latino	23.2%	16.7%	36.1%	6.5%	9.8%
Black/African American	0.3%	0.4%	0.2%	0.5%	0.7%
American Indian/Alaska Native	0.7%	0.7%	1.3%	0.3%	0.5%
Asian	0.8%	0.4%	0.3%	1.1%	0.9%
Native Hawaiian/Pacific Islander	0.1%	0.1%	0.1%	-	0.1%
Other	0.7%	0.7%	0.4%	1.0%	1.3%
Source: 2000 U.S. Census					

As shown, Lake County has the highest percentage of Hispanic or Latino populations in the Intermountain TPR, while Pitkin County has the lowest. In general, White and Hispanic/Latino persons account for approximately 97 percent of the population within the region.

Table 16 identifies the percent of the total population by county of individuals below the poverty level.

Table 16. Low-Income Population

County	Individuals Below Poverty Level	Percent of Total Population
Eagle	3,221	7.7%
Garfield	3,206	7.3%
Lake	991	12.7%
Pitkin	917	6.2%
Summit	2,098	8.9%
Region Total	$\mathbf{1 0 , 4 3 3}$	$\mathbf{7 . 9} \%$
Source: 2000 U.S. Census		

An initial step in addressing environmental justice issues is the identification of areas where lowincome or minority populations represent a significant portion of the total regional population.
Figure 21 illustrates the locations of the locations of minority populations, and Figure 22
illustrates low-income households within the Intermountain TPR.

3. Housing and Vehicle Registrations

Year 2000 housing data was obtained from the U.S. Census Bureau. As shown in Table 17, there were nearly 78,000 total housing units as of the most recent census. Almost 30 percent of these units were classified as seasonal or recreational homes. Of the total occupied housing units in the region, about 63 percent were owner-occupied, with the remaining 37 percent rental units.

Table 17. Housing Characteristics - Year 2000

County	Total Housing Units	Seasonal/ Recreational Units	Occupied Housing Units		
		Total	Ownership	Rental	
Eagle	22,111	5,932	15,148	9,649	5,499
Garfield	17,336	484	16,229	10,576	5,653
Lake	3,913	585	2,977	2,029	948
Pitkin	10,096	2,728	6,807	4,027	2,780
Summit	24,201	13,235	9,120	5,375	3,745
Total	$\mathbf{7 7 , 6 4 7}$	$\mathbf{2 2 , 9 6 4}$	$\mathbf{5 0 , 2 8 1}$	$\mathbf{3 1 , 6 5 6}$	$\mathbf{1 8 , 6 2 5}$
Source: US Census Bureau Census 2000					

Vehicle registrations in the Intermountain TPR are summarized in Table 18. As shown, a total of 162,931 vehicles were registered in the Region in the year 2000. This total includes all types of vehicles, such as buses, farm equipment, commercial vehicles, and recreational vehicles. The number of passenger cars, light trucks, and motorcycles is also shown; there were a total of 132,331 such vehicles registered in the year 2000.

Table 18. Vehicle Registrations - Year 2000

County	Total Vehicle Registrations	Passenger/ Motorcyclel Light Trucks
Eagle	50,367	42,687
Garfield	54,244	40,296
Lake	8,927	7,252
Pitkin	17,791	15,323
Summit	31,602	26,773
Total	$\mathbf{1 6 2 , 9 3 1}$	$\mathbf{1 3 2 , 3 3 1}$
Source: Colorado Department of Revenue 2001 Annual Report.		

4. Employment

Table 19 summarizes basic employment data by county for the Intermountain TPR, as provided by the Colorado Department of Local Affairs.

Table 19. Year 2000 Employment Data by County

Category	Eagle	Garfield	Lake	Pitkin	Summit	Region Total
Total Jobs	34,172	24,482	2,423	19,607	21,787	102,471
Labor Force	21,299	24,192	3,291	9,054	13,188	71,024
Employed Persons	20,840	23,585	3,142	8,816	12,920	68,303
Unemployed Persons	459	607	149	238	268	1,721
Unemployment Rate	2.16%	2.51%	4.53%	2.63%	2.03%	2.42%

Through a comparison of the above data, it can be seen that Eagle, Pitkin, and Summit Counties have a significantly larger number of total jobs than the available labor force. This indicates that a significant number of workers commute into these counties from outside. Overall, the Intermountain TPR has about 102,000 total jobs with only about 71,000 available workers, indicating a commuter component of about 31,000 workers from outside the region. These commuters will tend to further burden the Region's transportation system.

5. Tourism

The Intermountain region encompasses large areas of natural scenic beauty with numerous opportunities for outdoor recreation. Resort areas offer year-round activities for visitors to the region, including skiing, hiking, biking, hunting, fishing, golf, festivals, and other special events. Tourism has become an increasingly important economic element for many of the communities within the region.

2030 Intermountain Regional Transportation Plan

The importance of tourism has presented several challenges to communities in the Intermountain TPR: seasonality and low employee wages. The seasonality of many attractions within the region can make it difficult for businesses to remain viable and for their employees to maintain a consistent lifestyle. Local governments can likewise find it difficult to sustain the necessary infrastructure to accommodate large peaks in visitation during short seasons. This is being mitigated at a number of the resort areas by increasing the opportunities for year-round attractions and activities.

Tourism-related service jobs have historically paid relatively low wages. This has made it difficult for service workers in the Intermountain region to afford the cost of living near their jobs. This condition is reflected in the relatively high component of workers who commute from outside the Intermountain TPR.

6. Major Activity Centers

The Region includes 22 cities or towns, separated by large expanses of rural countryside. The Factory Outlet Stores in Silverthorne attract year-round shoppers from the front-range Colorado communities as well as tourists passing through the I-70 corridor. The Hot Springs in Glenwood Springs is a year-round destination as well.

There are several major ski resort areas, including Keystone, Breckenridge, and Copper Mountain in Summit County; Vail and Beaver Creek in Eagle County; and Aspen and Snowmass in Pitkin County. In addition to these resorts, smaller ski areas include Ski Cooper in Lake County and Sunlight Mountain Resort in Garfield County. The 2003-2004 ski season brought a total of approximately 7.5 million skiers to the region, about half of these skiers visited the resorts in Summit County.

The Intermountain TPR offers year-round recreational opportunities, including golf, hunting, fishing, hiking, biking, and camping. There are nearly 4,780 square miles of public lands within the Region, including National Forest lands and Bureau of Land Management holdings. Wilderness areas are a natural attraction for visitors and residents of the Region.

Because of the recreational attractions within the Intermountain TPR, several areas have experienced rapid growth in recent years. The Town of Avon and the Edwards area in Eagle County have seen an increase in both commercial and residential development.

Due to the significant inter-regional travel patterns associated with commuter activity between the resort areas and activity centers within the region, mobility along the I-70 corridor and along SH 82 is critical. I-70 provides the surface link to the Denver metro area for a large percentage of visitors to the Region. As congestion along this corridor increases, potential impacts to the Region's economy are perceived.

2030 Intermountain Regional Transportation Plan

7. Agriculture

The Intermountain TPR consists of large expanses of rural areas. Historically, agriculture has played a key role in the economy of the Region. Currently, there are approximately 767 ranches or farms in the TPR, covering a total of about 590,000 acres. The primary livestock is cattle (both beef and dairy), with some sheep operations in Garfield County. Forage (hay, grass, and silage) is the primary crop grown. Table 20 summarizes the agricultural data, based on the 2002 Census of Agriculture.

Table 20. Intermountain TPR Agriculture

	\# of Farms	Land in Farms (Acres)	Primary Crop	Primary Livestock
Eagle	114	115,998	Forage	Cattle
Garfield	499	404,335	Forage	Cattle/Sheep
Lake	34	17,253	Forage	Cattle
Pitkin	84	23,872	Forage	Cattle
Summit	36	27,814	Forage	Cattle
Total	767	589,272		
Source: 2002 Census of Agriculture, USDA				

B. Projected Socio-Economic Profile

1. Population Projections

The State Demographer has developed population projections by county through the year 2030. Table 21 summarizes the anticipated growth in population for the Intermountain TPR. As shown, the regional population is projected to increase at an approximate rate of 2.5 percent per year over the next 26 years. The total population for the region is forecasted to be nearly 280,000 people by the year 2030.

Table 21. Year 2030 Population Forecasts

County	2000 Total Population (1)	2030 Total Population (2)	Annual Growth Rate
Eagle	41,659	86,842	2.5%
Garfield	43,791	96,969	2.7%
Lake	7,812	18,458	2.9%
Pitkin	14,872	27,152	2.0%
Summit	23,548	50,421	2.6%
Region Total	$\mathbf{1 3 1 , 6 8 2}$	$\mathbf{2 7 9 , 8 4 2}$	$\mathbf{2 . 5} \%$
1. 2000 U.S. Census Data 2. State Demography Section			

2030 Intermountain Regional Transportation Plan

2. Employment Growth

The Center for Business and Economic Forecasting has projected the future labor force demand for each county through the year 2025. These data have been used to calculate an annual growth rate, which was then used to extend the projections to the year 2030. Table 22 summarizes the expected growth in employment for the Intermountain TPR. As shown, regional employment is expected to grow at a rate of approximately 3.3 percent per year, with a total future projected employment of about 304,000 jobs.

Table 22. Year 2030 Projected Employment

County	Total Jobs $\mathbf{2 0 0 0}$	Projected Total Jobs 2025	Annual Growth Rate	Projected Total Jobs 2030
Eagle	37,762	107,332	4.3%	132,270
Garfield	28,501	45,836	1.9%	50,400
Lake	2,640	6,330	3.6%	7,540
Pitkin	20,912	41,432	2.8%	47,500
Summit	24,759	56,499	3.4%	66,630
Region Total	$\mathbf{1 1 4 , 5 7 4}$	$\mathbf{2 5 7 , 4 2 9}$	$\mathbf{3 . 3} \%$	$\mathbf{3 0 4 , 3 4 0}$

C. Projected Travel Demand

Year 2030 annual average daily travel demand projections were provided in the Colorado Department of Transportation's Transportation Planning Data Set. Some minor modifications were made to these forecasts to reflect local planning efforts and other transportation studies conducted in the Intermountain TPR. Figure 23 illustrates the resultant annual average daily traffic volumes projected within the region.

As shown, traffic volumes along I-70 are projected to range from about 21,700 AADT west of Parachute to about 61,000 AADT near Dowd Junction. SH 82 traffic volumes are projected to range from a low of approximately 1,830 AADT between Aspen and Twin Lakes (over Independence Pass) to nearly 41,000 AADT approaching Glenwood Springs. SH 9 would carry about 33,500 AADT between Breckenridge and Frisco; between Breckenridge and Hoosier Pass, this highway would carry about 5,300 AADT. Significant growth is anticipated along US 6 between Gypsum and Minturn; the projected year 2030 volumes on this facility range from about 22,400 to 24,500 AADT.

2030 Intermountain Regional Transportation Plan

D. Projected Volume to Capacity Ratios

The CDOT Transportation Planning Data Set includes projected future traffic volume to roadway capacity (V/C) ratios for roadways within the Intermountain region. Figure 24 graphically depicts the V/C information. As shown, roadways that are projected to have a V/C ratio greater than 0.8 include:

- I-70, Glenwood Springs to New Castle.
- I-70, Edwards to Summit County/Clear Creek County line.
- SH 82, Glenwood Springs to Aspen.
- SH 6, through Rifle.
- SH 6, Gypsum to Eagle
- SH 6, Edwards/Avon area.
- SH 13, north of Rifle.
- SH 133, through Carbondale.
- SH 6, Dillon to Summit County/Clear Creek County line.
- SH 9, Frisco to Breckenridge.
- SH 9, Silverthorne to Green Mountain Reservoir.
- SH 24, through Leadville.

2030 Intermountain Regional Transportation Plan

V. CORRIDOR VISIONS

As discussed in Chapter I, the Regional Transportation Plan (RTP) was initiated based on visions and goals established for transportation corridors. An evaluation of the primary travel patterns was conducted with input from both the Regional Planning Commission (RPC) members and Technical Advisory Committee (TAC) groups. Figure 25 illustrates the significant commuter travel patterns currently observed within the region.

As shown, there is a significant intra-regional commute pattern along I-70 and SH 82 that extends between Parachute and the resort areas of Snowmass Village and Aspen. Similar commute patterns exist along the I-70 corridor between eastern Garfield County and the resort areas in the Vail valley, as well as along State Highways 24 and 91 between Lake County and the resort areas in Eagle and Summit Counties. Highway 9 also serves commuter needs between the Dillon/Silverthorne/Frisco areas and Breckenridge in Summit County.

Significant inter-regional commuter patterns occur along I-70: from the Front Range areas to the east and from the Grand Junction area to the southwest. SH 13 provides a commuter link with the Northwest TPR, as does SH 9 in northern Summit County.

With the above travel patterns identified, the state highways within the region were grouped into 16 corridors, as summarized in Table 23.

2030 Intermountain Regional Transportation Plan

Table 23. Intermountain Transportation Corridors

	Primary Highway	Description
1	I-70	70A - Glenwood Springs to C-470. This Corridor includes the parallel facilities of SH 6, from Dotsero to Dowd Junction, and from Dillon to I-70 over Loveland Pass. Also included are the Spur Roads at Eagle and Edwards.
2	I-70	70A - DeBeque to Glenwood Springs. This Corridor includes the parallel facilities of SH 6, from DeBeque to Parachute, and from I-70 west of Rifle to Canyon Creek near New Castle. The Silt Spur Road is also included in this Corridor.
3	SH 9	9C - Fairplay to Breckenridge
4	SH 9	9C - Breckenridge to I-70 at Frisco
5	SH 9	9D - I-70 to Kremmling
6	SH 13	13A - Rifle to Meeker
7	US 24	24A - Dowd Junction to Leadville
8	US 24	24A - Leadville to Buena Vista
9	SH 82	82A - Glenwood Springs to Aspen
10	SH 82	82A - Aspen to SH 24 at Twin Lakes
11	SH 91	91A - Leadville to I-70 at Copper Mountain
12	SH 131	131A/B - Wolcott to Steamboat Springs
13	SH 133	133A -Hotchkiss to Carbondale
14	SH 139	139A - I-70 to Rangely
15	SH 300	300A - SH 24 to End
16	SH 325	325A - SH 13 to CO RD 217

The Colorado Department of Transportation has defined a corridor as a transportation system that includes all modes and facilities within a specific geographic area, having both length and width. Therefore, some of the above corridors contain more than one highway, and many extend beyond the boundaries of the Intermountain TPR to better reflect the continuity with and connection to adjacent TPR's and Colorado as a whole. Figure 26 illustrates the 16 transportation corridors within the region.

2030 Intermountain Regional Transportation Plan

a. Corridor Visions

Through an extensive process involving both RPC and TAC members, Corridor Visions were developed for each of the above corridors. The purposes of the Corridor Visions are as follows:

- To integrate community values with multi-modal transportation needs
- To provide a corridor approach for a transportation system framework
- To strengthen partnerships to cooperatively develop a multi-modal system
- To provide administrative and financial flexibility in the Regional and Statewide Plans
- To link investment decisions to transportation needs
- To create a transportation vision for Colorado and surrounding states

The TAC focus groups provided guidance and local perspective throughout the development of the Corridor Visions. The TAC consisted of State, county and local staff, as well as interested citizens. The groups primarily focused on bicycle/pedestrian and Travel Demand Management/Intelligent Transportation Systems TDM/ITS issues. In addition, an Aviation TAC focus group (consisting of local airport management State aviation staff) met separately to identify air transportation needs. A Transit TAC, formed as a part of the separate Transit Element process, also provided input in this process. The input received from these groups helped to ensure that the Corridor Visions addressed all modes of transportation, and that alternatives for reducing vehicular traffic through TDM measures were identified for the appropriate corridors. The Garfield County 2030 Transportation Strategies, October 2003, was referenced in this process.

The Corridor Visions provide a general description of each corridor's investment needs, future travel modes, geographic and social environment, and the values of the communities served by the corridor. Table 24 provides a summary of the potential environmental concerns associated with each of the Intermountain TPR corridors. Based on this, goals and strategies were identified. The goals begin to define the primary objectives for each corridor, while the strategies provide more specific guidance on the means to achieve the identified goals and, thus, the Corridor Vision. The resultant Corridor Visions, goals and strategies are provided in Appendix B.

2030 Intermountain Regional Transportation Plan

Table 24. Potential Environmental Concerns by Corridor

Highway	Corridor Name	Potential Environmental Concerns
1. $\mathrm{I}-70$	I-70 West Mountain Corridor	USFS, BLM, Lynx Habitat and crossing issues, animal crossings in general, Water Quality, Endangered fish and fish recovery programs associated with the Colorado River drainage basin
2. $\mathrm{I}-70$	I-70 West of Glenwood Springs	Colorado River and all the issues associated with it. BLM
3. SH 9C	SH 9 Fairplay to Breckenridge	Lynx Habitat and Lynx crossing, USFS
4. SH 9	SH 9 Breckenridge to I-70 at Frisco	Lynx habitat and Lynx crossing issues
5. SH 9	SH 9 North of I-70	
6. SH 13A	SH 13 Rifle to Meeker	BLM
7. SH 24	SH 24 Dowd Junction to Leadville	USFS, Lynx Habitat and Lynx crossing, Wetlands and riparian complexes, history, water quality, scenic byway
8. SH 24 A	SH 24 Leadville to Buena Vista	USFS, Lynx Habitat and Lynx crossing, Wetlands and riparian complexes, history, water quality, scenic byway
9. SH 82	SH 82 Glenwood Springs to Aspen	BLM, USFS, Lynx habitat
10. SH 82	SH 82 Aspen to SH 24	USFS, Lynx habitat, lynx crossing, alpine tundra high valley eco system
11. SH 91A	SH 91 Leadville to Copper Mountain	Lynx habitat, lynx crossing, scenic byway
12. SH 131A/B	SH 131 from I-70 at Wolcott to Steamboat Springs	Lynx crossing zone ID'd by the BLM, BLM
13. SH 133A	SH 133 Hotchkiss to Carbondale	BLM, USFS, Paonia State park, lynx habitat and lynx crossing, scenic byway
14. SH139A	SH 139 I-70 to Rangely	BLM, Highline State Park, scenic byway
15. SH 300A	SH 300 from SH 24 at Malta to End	Lynx habitat
16. SH 325A	SH 325 from SH 13 north of Rifle to End at county road 217	BLM, USFS, Rifle Falls State Park

2030 Intermountain Regional Transportation Plan

B. Project Categories

Using the Corridor Visions as a guide for project identification, the RPC, with technical assistance from the TAC, provided specific projects transportation improvements under the following four categories:

- Highway Projects. This category includes all projects which have a primary objective of improving the infrastructure for safe and efficient vehicular movements, such as new roadways, roadway widening, intersection improvements, and shoulder widening.
- Transit Projects. Projects listed under this category might include service/operations expansions, vehicle purchase, and support facilities/infrastructure for regional and local transit systems.
- TDM/ITS Projects. This category includes any Transportation Demand Management programs and Intelligent Transportation Systems improvements not included in projects covered under other categories.
- Bicycle/Pedestrian Projects. This category covers projects with a primary purpose of providing safe and efficient bicycle and pedestrian movement, including trail improvements, crossings and grade separations (overpasses or underpasses), or other related improvements.

A category for rail projects, which includes any project that would enhance or maintain the rail system for passenger or freight movements, was available to the RPC; however, no projects were submitted under this category. Aviation projects (improvements to on-site airport activity, such as equipment purchase, runway and terminal improvement or construction, and airport access improvements) were also not submitted through this process, as funding for such projects typically comes from sources other than CDOT's Regional Priorities Program.

Projects within the above categories were further classified by the CDOT Investment categories of Safety, Mobility, and System Quality.

C. Project Prioritization

From the outset of the planning process, it was clear that the transportation needs of the Intermountain TPR would far exceed the available funding through CDOT's Regional Priority Program (RPP). Therefore, a process would be needed to prioritize projects for the allocation of available funds. The RPC identified the project prioritization process utilized for the 2020 Plan as appropriate for the 2030 update process.

2030 Intermountain Regional Transportation Plan

1. Prioritization Criteria

Based on the overall vision statement for the region, a total of 17 criteria were developed for evaluating and ranking projects. In addition to the 17 criteria, a rating and weighting system allowed projects to receive varying scores according to how well each project fit the criteria. Under this system, a project could receive a potential total of 117 points. Table 25 documents the evaluation criteria as used in the 2030 planning process.

Table 25. Project Evaluation Criteria

Criteria	Rating	Weight	Possible Points
Does the project fit the corridor vision?	Yes/No	-	Pass/Fail
Does the project support local land use plans?	0-3	3	9
Does the project relieve congestion?	0-3	1	3
Does the project improve transportation system continuity?	0-3	2	6
Does the project preserve the existing transportation system?	0-3	3	9
Is the project intermodal or multi-modal?	0-3	3	9
Is the project eligible for multiple funding sources?	0-3	2	6
Does the project enhance the environment or minimize the external environmental impacts?	0-3	2	6
Does the project preserve land?	0-3	2	6
Does the project maximize the efficiency of the transportation system?	0-3	2	6
Does the project minimize the number of trips?	0-3	3	9
Does the project minimize travel distances/times between housing and community services?	0-3	2	6
Does the project minimize disruption to lowincome or minority communities?	0-3	3	9
Does the project minimize the need for additional local capital or impose long-term maintenance costs on local governments?	0-3	3	9
Does the project support economic development?	0-3	1	3
Does the project have public support?	0-3	3	9
Does the project improve safety?	0-3	3	9
How easily can the project be implemented?	0-3	1	3
		Total	117

2030 Intermountain Regional Transportation Plan

The first criterion is an initial screening device which uses the Corridor Vision appropriate for each project. If a project was found to be inconsistent with the Corridor Vision, it was dropped from further consideration; hence the pass/fail score.

The application of the criteria was a subjective process. Guidelines were provided in the 2020 Plan to assist in the scoring and to help provide some consistency in the application of the criteria. For the 2030 regional planning process, the scoring guidelines were modified based on extensive input from the TAC to allow project prioritization across modes, without using a separate system for each mode (as was done for the 2020 plan). The guidelines used in this process are included in Appendix C.

2. Alternatives Analysis

Due to the level of previous transportation improvement project planning and the character of the transportation deficiencies within the Intermountain TPR, the RPC chose to limit the extent of the technical analysis of alternatives. Instead, the RPC focused on regional priorities relative to the Corridor Visions and projected resource allocation for the Regional Priority Program.

The Consultant team scored each of the 159 projects submitted by the Intermountain TPR. The preliminary ranking of projects was presented to the RPC on February 26, 2004, at which time the RPC reviewed each project score and made adjustments to the rankings to better reflect the needs of the region. The prioritized list of projects was then distributed to the RPC and TAC members for an additional review period. A final draft list was provided the RPC/TAC on April 19, 2004.

2030 Intermountain Regional Transportation Plan

VI. PREFERRED PLAN

The Preferred Plan includes all of the identified transportation improvement needs in the Intermountain TPR through the year 2030. The Plan has been based on technical analyses, on previous and on-going transportation planning efforts in the region, and on public input. The following sections describe the elements of the Preferred Plan.

a. Regional Priority Program Projects

The RPC submitted 159 projects identified for potential funding through the Regional Priorities Program; Table 26 summarizes the projects by mode. As shown, the identified projects total approximately $\$ 7.8$ billion. The projects were prioritized as discussed in previous sections of this report; Table 27 summarizes the projects by regional priorities.

Table 26. Project Summary by Mode

Mode	Number of Projects	Total Cost (Millions)
Highway	111	$\$ 7,644.89$
Bicycle/Pedestrian	25	$\$ 69.36$
TDM/ITS	15	$\$ 20.89$
Transit	8	$\$ 51.70$
Total	$\mathbf{1 5 9}$	$\$ 7,786.84$

Table 27. Intermountain 2030 Preferred Plan
2030 Intermountain
Regional Transportation Plan

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
1	9	Maroon Creek Bridge Replacement	Pitkin	108	Highway	MQS	\$25.00	\$25.00
2	4	SH 9, Frisco to Breckenridge (safety \& mobility improvements)	Summit	103	Highway	MQS	\$90.00	\$115.00
3	13	Reconstruction of SH 133 in Carbondale	Garfield	102	Highway	M	\$24.10	\$139.10
4	1	I-70 G Spur Road Improvements	Eagle	101	Highway	MQS	\$23.00	\$162.10
5	9	Bus Rapid Transit for the Roaring Fork Valley	Pitkin	101	Transit	MQ	\$25.00	\$187.10
6	7	US 24 Tennessee Pass Project (geometric improvements, passing lanes)	Lake	93	Highway	S	\$9.50	\$196.60
7	1	Vail Frontage Roads (geometric, bike/ped improvements)	Eagle	90	Highway	MQS	\$25.00	\$221.60
8	1	Sediment Control on Straight Creek	Summit	33	Highway	Q	\$18.00	\$239.60
9	1	I-70 Airport Interchange and Intermodal Connector	Eagle	70	Highway	Q	\$60.00	\$299.60
10	9	South Bridge (new, off-system bridge)	Garfield	67	Highway	Q	\$5.00	\$304.60
11	9	Reconstruct Red Canyon Road/SH 82 Intersection	Garfield	83	Highway	S	\$2.20	\$306.80
12	3	SH 9 South (improve to CDOT standards, Breckenridge to top of Hoosier Pass)	Summit	79	Highway	MQS	\$24.00	\$330.80
13	9	Midland Avenue Underpass	Pitkin	81	Highway	MS	\$7.50	\$338.30
14	1	Vail Intermodal Site	Eagle	97	Transit	Q	\$15.00	\$353.30
15	4	Town of Breckenridge Intermodal Center and Park-NRide, Phase II	Summit	81	Transit	M	\$1.00	\$354.30
$\mathrm{M}=$ Mobility, Q = System Quality, S = Safety								

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
16	9	SH 82 Pedestrian Overpass	Pitkin	85	Bike/Ped	MQS	\$1.20	\$355.50
17	9	SH 82/Willits Lane Traffic Signal	Eagle	70	Highway	S	\$0.28	\$355.78
18	4	Dual Turn Lane, Northbound SH 9 to Eastbound I-70	Summit	60	Highway	M	\$0.80	\$356.58
19	1	Avon to Dowd, Phase II and III, Eagle Valley Regional Trail System	Eagle	70	Bike/Ped	MQS	\$1.20	\$357.78
20	5	SH 9 - North Corridor from Silverthorne to Kremmling (Improve to CDOT standards)	Summit	88	Highway	MQS	\$40.00	\$397.78
21	1	SH 6 Lake Creek Road to Avon Road Improvements	Eagle	98	Highway	Q	\$36.50	\$434.28
22	13	West Elk Loop Byway Trail Crystal River Valley Segment	Pitkin	80	Bike/Ped	Q	\$4.30	\$438.58
23	9	Relocation of SH 82 EIS - Traffic Model	Garfield	67	Highway	M	\$2.00	\$440.58
24	1	Vail Pass Trail along I-70 (repairs, drainage improvements)	Summit/Eagle	73	Bike/Ped	QS	\$2.30	\$442.88
25	1	SH 6 Avon Road to Eagle Road Improvements	Eagle	98	Highway	Q	\$10.71	\$453.59
26	1	Transit Center, Town of Avon	Eagle	82	Transit	M	\$1.20	\$454.79
27	2, 9	Transportation Demand Management Program	Garfield	84	TDM/ITS	M	\$2.00	\$456.79
28	1	I-70 Advanced Guideway System MP 142 to MP 260	Eagle	99	Highway	Q	\$0.10	\$456.89
29	1	I-70 F Ramp, Intersection, and Overpass Improvements	Eagle	96	Highway	MQS	\$2.36	\$459.25

Table 27. Intermountain 2030 Preferred Plan (Continued)

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
46	1	Transit Service between Denver and Summit County	Summit	77	Transit	MQS	\$2.00	\$715.45
47	2	Roundabouts at I-70 Interchange Ramps MP 90	Garfield	36	Highway	S	\$1.50	\$716.95
48	2	Upgrade I-70 Interchange at MP 97	Garfield	55	Highway	S	\$3.50	\$720.45
49	2	US 6 Intersection Reconstruction- SH 13, Railroad Ave, Whitewater	Garfield	41	Highway	S	\$2.50	\$722.95
50	13	Intersection Reconstruction SH 82/SH 133	Garfield	70	Highway	M	\$11.40	\$734.35
51	4	TMO Coordinator and Transit/Transportation alternative improvements	Summit	89	Transit	MQS	\$3.00	\$737.35
52	1	US 6 Improvements through the Town of Eagle	Eagle	85	Highway	MQS	\$4.75	\$742.10
53	12	SH 131 Realignment from Wolcott north across Eagle River	Eagle	84	Highway	Q	\$8.50	\$750.60
54	7	US 24/Minturn Main Street Safety and Drainage Improvements	Eagle	84	Highway	S	\$3.00	\$753.60
55	1	I-70 Dowd Canyon Realignment	Eagle	83	Highway	Q	\$484.00	\$1,237.60
56	1	I-70 Interchange Modifications, Gypsum Exit (MP 140)	Eagle	83	Highway	Q	\$2.00	\$1,239.60
57	1	I-70 Interchange Modifications to Avon Exit (MP 167)	Eagle	83	Highway	Q	\$4.00	\$1,243.60
58	1	SH 6 Eagle River Bridge east of Eagle (bridge repl., bike/ped improvements)	Eagle	83	Highway	Q	\$1.50	\$1,245.10

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
59	7	SH 24 Passing Lane on north side of Tennessee Pass	Eagle	83	Highway	Q	\$1.80	\$1,246.90
60	7	SH 24 Dowd Junction to Minturn Improvements	Eagle	83	Highway	Q	\$3.10	\$1,250.00
61	12	SH 131 Shoulder Widening, Wolcott to Routt County Line	Eagle	83	Highway	Q	\$11.59	\$1,261.59
62	1	Transit Center at Eagle County Airport	Eagle	82	Transit	M	\$2.00	\$1,263.59
63	1	US 6 Bridge Replacement over Gypsum Creek	Eagle	82	Highway	S	\$2.40	\$1,265.99
64	1	SH 6 Eagle Road to Dowd Junction Improvements	Eagle	98	Highway	Q	\$11.42	\$1,277.41
65	7	SH 24 Minturn to White River National Forest Improvements	Eagle	81	Highway	Q	\$0.60	\$1,278.01
66	7	SH 24 Passing Lane on south side of Tennessee Pass	Eagle	81	Highway	Q	\$1.70	\$1,279.71
67	1	I-70 Interchange Modifications to West Vail Exit (MP 173)	Eagle	77	Highway	Q	\$5.00	\$1,284.71
68	1	I-70 Wolcott Area Curve Safety Modifications	Eagle	75	Highway	Q	\$18.00	\$1,302.71
69	1	I-70 Transportation Management Organization	Eagle	75	TDM/ITS	Q	\$0.10	\$1,302.81
70	1	I-70 Gypsum Interchange improvements	Eagle	74	Highway	M	\$4.40	\$1,307.21
71	1	Cascade Pedestrian Overpass	Eagle	73	Bike/Ped	S	\$4.00	\$1,311.21
72	1	Union Pacific RR Bridge Replacement over US 6 in Gypsum	Eagle	72	Highway	S	\$3.70	\$1,314.91
73	1	I-70 Automated Fare Collection/ITS Technologies	Eagle	71	TDM/ITS	M	\$0.65	\$1,315.56
$\mathrm{M}=$ Mobility, Q = System Quality, S = Safety								

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
74	1	SH 6 Eagle County Airport to Eagle Improvements	Eagle	100	Highway	Q	\$5.10	\$1,320.66
75	1	I-70 Construction of Snow Slide Mitigation in west Vail Pass Area	Eagle	70	Highway	S	\$31.60	\$1,352.26
76	1	SH 6 Gypsum to Eagle County Airport Improvements	Eagle	98	Highway	Q	\$7.51	\$1,359.77
77	1	Eagle to Gypsum, Eagle Valley Regional Trail System	Eagle	70	Bike/Ped	MQS	\$3.00	\$1,362.77
78	9	SH 82 Improvements per Access Control Plan	Eagle	99	Highway	MQ	\$2.10	\$1,364.87
79	1	I-70 Climbing Lane between Avon and Post Blvd (Eastbound)	Eagle	68	Highway	Q	\$3.00	\$1,367.87
80	1	I-70 Climbing/Descending Lanes over Vail Pass MP 181 to MP 195	Eagle	67	Highway	Q	\$270.00	\$1,637.87
81	7	Dowd Junction to Minturn Segment, Eagle Valley Regional Trail System	Eagle	62	Bike/Ped	MQS	\$1.20	\$1,639.07
82	7	Minturn to Red Cliff Segment Eagle Valley Regional Trail System	Eagle	67	Bike/Ped	MQS	\$1.70	\$1,640.77
83	12	SH 131 Bridge over Eagle River north of Wolcott	Eagle	66	Highway	Q	\$0.57	\$1,641.34
84	1	Gypsum to Dotsero Segment Eagle Valley Regional Trail System	Eagle	67	Bike/Ped	MQS	\$1.00	\$1,642.34
85	1	I-70 Black Gore Creek Erosion Control on Vail Pass	Eagle	65	Highway	Q	\$20.00	\$1,662.34
86	1	Town of Vail Missing Trail Links Gore Valley Regional Trail System	Eagle	65	Bike/Ped	Q	\$1.80	\$1,664.14

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
87	1	Buffalo Ridge Pedestrian Overpass	Eagle	65	Bike/Ped	MS	\$1.50	\$1,665.64
88	12	SH 131/State Bridge Acceleration/Deceleration lanes	Eagle	64	Highway	Q	\$0.50	\$1,666.14
89	1	Main Vail Underpass Pedestrian Improvements	Eagle	63	Bike/Ped	QS	\$1.20	\$1,667.34
90	1	I-70 New Interchange west of Edwards	Eagle	62	Highway	Q	\$4.00	\$1,671.34
91	1	I-70 New Interchange east of Eagle	Eagle	62	Highway	Q	\$4.00	\$1,675.34
92	1	West Edwards to Eagle Segment - Eagle Valley Regional Trail System	Eagle	66	Bike/Ped	MQS	\$7.00	\$1,682.34
93	1	Black Gore Creek Sand Mitigation	Eagle	62	Highway	Q	\$45.00	\$1,727.34
94	1	I-70 Advanced Pavement Delineation, Lighting, Glare Screens	Eagle	61	TDM/ITS	S	\$2.10	\$1,729.44
95	16	Reconstruct SH 325 Rifle Gap Road (safety \& geometric improvements)	Garfield	48	Highway	Q	\$2.00	\$1,731.44
96	7	Acquisition of Tennessee Pass Rail Corridor or Trail and Rail	Eagle	88	Bike/Ped	MQS	\$15.00	\$1,746.44
97	11	SH 91, Copper Mountain to Summit of Fremont Pass	Summit	81	Highway	MQS	\$28.00	\$1,774.44
98	2	US 6 Silt Downtown Improvements	Garfield	41	Highway	Q	\$6.60	\$1,781.04
99	2	Reconstruct US 6 Rifle to Silt	Garfield	60	Highway	Q	\$5.00	\$1,786.04
100	9	Reconstruct SH 82/CMC/Cattle Creek Road Intersections	Garfield	50	Highway	Q	\$5.30	\$1,791.34

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
101	2	US 6 Improvements in Parachute	Garfield	54	Highway	Q	\$2.40	\$1,793.74
102	9	Reconstruct Sunlight Bridge	Garfield	43	Highway	Q	\$2.00	\$1,795.74
103	2	Upgrade I-70 Pedestrian Overpass At MP 74	Garfield	54	Bike/Ped	Q	\$0.60	\$1,796.34
104	1	Copper Mountain Noise Wall	Summit	56	Highway	Q	\$2.00	\$1,798.34
105	2	I-70 Underpass at MP 74	Garfield	39	Highway	M	\$7.30	\$1,805.64
106	6	Reconstruct SH 13, SH 6 through Rifle	Garfield	56	Highway	Q	\$6.50	\$1,812.14
107	2	US 6 Improvements in New Castle	Garfield	39	Highway	S	\$6.00	\$1,818.14
108	2	I-70 to US 6 Connection at MP 94	Garfield	47	Highway	M	\$25.00	\$1,843.14
109	2	Construct Pedestrian and Bicycle facilities over I-70 at Devereaux Road	Garfield	65	Bike/Ped	S	\$0.86	\$1,844.00
110	2	Coal Ridge High School/River Frontage Road Trails in Silt	Garfield	36	Bike/Ped	S	\$1.60	\$1,845.60
111	9	Bike/Ped Improvements to SH 82 through Glenwood Springs	Garfield	60	Bike/Ped	S	\$1.70	\$1,847.30
112	2, 9	Reconstruct I-70/US 6/SH 82 Intersection	Garfield	44	Highway	S	\$5.00	\$1,852.30
113	15	SH 300 Bridge Replacement	Lake	43	Highway	Q	\$0.00	\$1,852.30
114	7	SH 91 improvements in Lake County	Lake	41	Highway	Q	\$0.00	\$1,852.30
115	1	I-70 Noise Wall, MP 201 to MP 203	Summit	41	Highway	Q	\$0.00	\$1,852.30
116	2	Coal Ridge High School/US 6 Trail	Garfield	30	Bike/Ped	M	\$1.40	\$1,853.70

Table 27. Intermountain 2030 Preferred Plan (Continued)

Table 27. Intermountain 2030 Preferred Plan (Continued)

Table 27. Intermountain 2030 Preferred Plan (Continued)

ITPR Priority	Corridor	Project Name	County	Score	Mode	Investment Category *	Cost (Millions)	Cumulative Total
148	2	New I-70 Interchange at MP 101.5	Garfield	40	Highway	M	\$10.10	\$2,034.44
149	2	Reconstruct I-70 Interchange at MP 105	Garfield	46	Highway	M	\$7.30	\$2,041.74
150	2	Construct New Interchange between MP 105 and MP 109	Garfield	25	Highway	M	\$10.00	\$2,051.74
151	2	Reconstruct I-70 Interchange at MP 87 (West Rifle)	Garfield	41	Highway	M	\$15.00	\$2,066.74
152	6	Extend Park Avenue south to New Intersection at SH 13	Garfield	19	Highway	M	\$0.90	\$2,067.64
153	6	Connect SH 13 Bypass at 11th in Rifle	Garfield	13	Highway	M	\$1.30	\$2,068.94
154	1	No Name Tunnel Lighting and Tile Replacement	Garfield	62	Highway	S	\$6.00	\$2,074.94
155	6	Rio Blanco Divide SH 13 Improvements MP 4 to MP 22.7	Garfield	66	Highway	S	\$31.00	\$2,105.94
156	1, 2	Glenwood West I-70 MP 110 to MP 119	Garfield	54	Highway	Q	\$28.00	\$2,133.94
157	1, 2	Region 3 Tunnel Infrastructure Upgrade	Garfield	64	Highway	S	\$5.00	\$2,138.94
158	2	Parachute E/W MP 68 to MP 86.5 (I-70 Reconstruction)	Garfield	57	Highway	Q	\$48.00	\$2,186.94
159	1	I-70 Advanced Guideway System MP 142 to MP 260	Eagle	99	Highway	Q	\$5,599.90	\$7,786.84

$M=$ Mobility, $Q=$ System Quality, S = Safety

2030 Intermountain Regional Transportation Plan

B. Transit Element

As previously discussed, the projected transit needs of the region were identified through a separate process, as documented in the 2030 INTERMOUNTAIN REGIONAL
TRANSPORTATION ELEMENT, LSC Transportation Consultants, Inc., June 2003 (Amended August, 2004). This document is a comprehensive analysis of existing transit demand and projected future transit needs for the region. A preferred list of projects was developed; 137 transit projects were identified and prioritized using the same general methodologies described in this report.

The preferred transit element totals approximately $\$ 13.6$ billion. The majority of these projects are anticipated to be funded primarily through Federal Transit Administration dollars; however, eight of these projects were included in the prioritization process for Regional Priority Program funds.

C. Aviation Projects

The aviation projects to be included in the 2030 Preferred Plan were compiled by the Aviation TAC, consisting of airport management staff and CDOT Division of Aeronautics personnel. Because these projects are anticipated to receive funding through federal and state sources other than Regional Priority Program funds, the aviation projects were not included in the previously discussed prioritization process. The Aviation TAC did, however, identify a fiscally constrained element consisting of projects programmed in the current Airport Capital Improvement Plan. Table 28 summarizes the aviation element to the preferred plan.

2030 Intermountain Regional Transportation Plan

Table 28. Intermountain TPR 2030 Aviation Projects

Preferred Aviation Projects					
Airport	Corridor Number	Projects	CDOT Investment Category	Cost Estimate	Fiscally Constrained***
AspenPitkin County		1. Improve runway OFA	Safety	\$5,666,666	X
		2. Relocate ARFF/SRE buildings and vault	Safety	\$7,900,000	X
		3. Relocate taxiways A-3, A-5	Safety	\$2,777,777	X
		4. Rehab Runway 1533 and OFA	Safety	\$8,500,000	X
		5. Relocate south GA: Taxiway A3 to A5	Safety	\$6,222,222	X
		6. Relocate/reconstruct taxiways and GA ramp	Safety	\$2,110,000	X
		7. New terminal with site improvements	Mobility	\$35,000,000	
		8. Rehab Runway 1533	System Quality	\$10,000,000	
		9. Rehab Taxiway A	System Quality	\$6,500,000	
Eagle County		1. Rental car maintenance facility	Mobility	\$2,575,000	
		2. Acquire ARFF vehicle	Safety	\$888,888	X
		3. Construct 2 high speed taxiways	Safety	\$3,000,000	X
		4. Extend RW7 and taxiway (acquire land)	Safety	\$4,222,222	X
		5. Extend RW 7 and taxiway (site prep)	Safety	\$10,777,777	X
		6. Extend RW 7 and taxiway (paving)	Safety	\$5,222,222	X
		7. Rehab north GA Ramp	System Quality	\$1,111,111	X
		8. Construct stopway and deice pad	Safety	\$2,600,000	X
		9. Acquire land SE	Mobility	\$2,600,000	

2030 Intermountain Regional Transportation Plan

Table 28. Intermountain TPR 2030 Aviation Projects (Continued)

Preferred Aviation Projects					
Airport	Corridor Number	Projects	CDOT Investment Category	Cost Estimate	Fiscally Constrained***
		10. Expand terminal building	Mobility	\$4,444,444	
		11. Construct cargo apron	Mobility	\$2,777,777	
		12. Construct cargo apron north	Mobility	\$1,666,666	
		13. Construct north partial parallel taxiway "B"	Safety	\$1,111,111	
Glenwood Springs		1. Slurry seal runway	System Quality	\$20,650	
		2. Fencing - north and west	Safety	\$38,000	
		3. PAPI Lights	Safety	\$27,000	
		4. Fencing and gates south	Safety	\$50,000	
		5. Reconstruct runway	System Quality	\$150,000	
		6. Reconstruct taxiway	System Quality	\$75,000	
		7. Increase runway width from 50' to 60'**	Safety	\$230,000	
		8. Add taxiway/ turnaround**	Safety	\$275,000	
		9. Construct FBO Building	Mobility	\$250,000	
Leadville		1. Grade terminal expansion area for new FBO	Mobility	\$400,000	
		2. Grade hangar area to relocate existing hangar	Safety	\$100,000	
		3. Seal coat and remark runway	System Quality	\$50,000	
		4. Construct new access road to terminal	Mobility	\$125,000	
		5. Construct new FBO office and hangar	System Quality	\$250,000	

2030 Intermountain Regional Transportation Plan

Table 28. Intermountain TPR 2030 Aviation Projects (Continued)

Preferred Aviation Projects					
Airport	Corridor Number	Projects	CDOT Investment Category	Cost Estimate	Fiscally Constrained***
		6. Construct Snow Removal Building	Safety	\$166,667	
		7. Construct additional terminal area for hangars and apron	Mobility	\$2,000,000	
		8. Construct full parallel taxiway	Safety	\$1,500,000	
		9. Construct displaced threshold on both ends of the runway	Safety	\$1,000,000	
		10. Widen runway to 100' and overlay runway and taxiway	Safety	\$2,000,000	
		11. Remove Part 77 obstructions	Safety	\$1,666,666	
		12. Install REILS	Safety	\$166,666	
Rifle		1. ARFF-SRE-Office building	Safety	\$463,500	
		2. Strengthen apron	System Quality	\$535,295	
		3. Improve RSA	Safety	\$5,555,555	X
		4. Improve RSA Phase II	Safety	\$4,444,444	X
		5. Improve RSA Phase III	Safety	\$6,666,666	X
		6. Improve RSA Phase IV	Safety	\$3,333,333	X
		7. SRE Building	Safety	\$200,000	
		8. Construct Control Tower	Safety	\$5,000,000	
		9. Replace beacon	System Quality	\$150,000	
		10. Replace ILS	Safety	\$200,000	
		11. Replace SRE, Snow Plow, Broom and Blower	Safety	\$750,000	
TOTAL PREFERRED AVIATION PROJECT COSTS INTERMOUNTAIN TPR				\$165,513,325	
$*$ Note: In many cases the projects identified above are local community generated and are not necessarily endorsed or supported by either CDOT or the FAA					

2030 Intermountain Regional Transportation Plan

These aviation projects total approximately $\$ 166$ million.

D. Local Transportation Needs

The primary focus of the 2030 Intermountain Regional Transportation Plan has been the state highway system. Off-system county and municipal roads, however, make up a large percentage of the roadway network centerline miles. To better address the long range future needs of the local roadway system, CDOT will integrate existing local roadway conditions, future needs, and potential financial resources into the Statewide Transportation Plan (STP).

As previously discussed, joint CDOT/DOLA meetings were held late summer and early fall, 2003 with county and municipal officials. The meetings helped to acquaint local governments with the 2030 STP process and invited active participation in the process. Comments and information on local transportation needs were solicited.

ع. Summary of Preferred Plan Costs

With the Regional Priority Program projects, the transit element projects (minus those included in the RPP prioritization), and the aviation project costs, the total estimated costs for the Intermountain Preferred Plan are approximately $\$ 21.3$ billion.

2030 Intermountain Regional Transportation Plan

VII. FISCaLLY CONSTRAINED PLAN

The Regional Priority Program will not provide sufficient funding to implement all of the projects identified in the Preferred Plan. Therefore, a Fiscally Constrained Plan was developed based on the project prioritization process and on resource allocation estimates from CDOT Regions 1 and 3.

a. Resource allocation

In April of 2004, the CDOT Regions held joint meetings with the TPR's to establish the RPP resource allocations to the year 2030. The total available funding for the Intermountain TPR was determined to be approximately $\$ 23.39$ million: $\$ 13.20$ million from Region 1 (Summit County) and $\$ 10.19$ million from Region 3 (Eagle, Garfield, Lake, and Pitkin Counties). These resources were assigned at the joint CDOT/TPR meetings.

In addition to RPP funds, there will be some Congestion Relief funding available for state highways with existing volume to capacity ratios greater than 0.85. Aspen/Pitkin County currently receive Congestion Mitigation and Air Quality Improvement Program (CMAQ) funding. Other funding may also be available through various federal grant programs, as provided in TEA-21. This plan, however, does not include any of these additional funding mechanisms, nor does it identify candidate projects for these programs. The Intermountain TPR does encourage member entities and eligible organizations to apply for these funds. Projects awarded these grants are eligible to be included in the Statewide Transportation Improvement Program (STIP).

Federal discretionary revenues may also be available for specific projects. In the Intermountain TPR, one project, the Maroon Creek bridge in Aspen, has been identified as a potential candidate for this source of funds. Should the application for Federal discretionary funding of the Maroon Creek bridge be accepted, the State would provide any local matching funds, as required.

B. Fiscally Constrained Plan

The final step in the development of the 2030 Intermountain Regional Transportation Plan is to identify a Fiscally Constrained Plan, which includes projects that are likely to receive some funding through the Regional Priority Program. The Intermountain RPC has determined, however, that any projects within the region already identified in the current STIP shall be held harmless; in other words, priority projects from previous planning efforts by the Intermountain TPR will move forward. Table 29 summarizes the RPP projects identified for the Region in the current STIP, and includes the Fiscally Constrained element of the 2030 Preferred Plan. The Fiscally Constrained Plan also includes the Fiscally Constrained element to the Transit Element. Table 30 summarizes these projects, and identifies funding sources. Figure 27 illustrates the locations of the Fiscally Constrained projects within the Region.
Table 29. Intermountain 2030 Fiscally Constrained Plan

ITPR Priority	Corridor	Project Name	County	Mode	Investment Category *	Cost (Millions)	CDOT Regional Allocation		Cumulative Total
							Region 3	Region 1	
Current STIP Projects (Year 2005-2008)									
STIP	11	Bottom of Tennessee Pass	Lake	Highway	S	-	\$7.10		\$7.10
STIP	9	South Glenwood Intersection	Garfield	Highway	M	-	\$8.50		\$15.60
STIP	2	Railroad Avenue Safety Improvements	Garfield	Highway	S	-	\$0.19		\$15.79
STIP	7	SH 24 Near Leadville	Lake	Highway	S	-	\$0.16		\$15.95
STIP	2	I-70, MP 109-112	Garfield	Highway	S	-	\$0.14		16.09
STIP	1, 3	I-70 SH 9, Cable Rail	Summit	Highway	S	-		\$1.70	\$17.79
STIP Totals							\$16.09	\$1.70	
Fiscally Constrained Element of 2030 Preferred Plan									
1	9	Maroon Creek Bridge Replacement	Pitkin	Highway	MQS	\$25.00	\$4.00		\$4.00
2	4	SH 9, Frisco to Breckenridge (safety \& mobility improvements) **	Summit	Highway	MQS	\$90.00		\$9.10	\$13.10
3	13	Reconstruction of SH 133 in Carbondale	Garfield	Highway	M	\$24.10	\$2.19		\$15.29
4	1	I-70 G Spur Road Improvements	Eagle	Highway	MQS	\$23.00	\$2.00		\$17.29
5	9	Bus Rapid Transit for the Roaring Fork Valley	Pitkin	Transit	MQ	\$25.00	\$2.00		\$19.29
8	1	Sediment Control on Straight Creek	Summit	Highway	Q	\$18.00		\$2.10	\$21.39
$\begin{array}{ll} \hline * & M=\text { Mobility, } Q=\text { System Quality, } S=\text { Safety } \\ * * & \text { Also included in current STIP. } \end{array}$									

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
ASPEN			
M	Capital Replacement (Maintain Existing Service)	\$409,773	\$10,244,316
M	Operating (Maintain Existing Service)	\$3,168,908	\$79,222,708
1	Galena Street Shuttles	\$58,313	\$1,457,834
2	Cross-town Shuttle	\$58,313	\$1,457,834
3	EEDAR Shuttles (4WD)	\$58,477	\$1,461,932
4	Highlands Direct Bus	\$65,290	\$1,632,261
5	Replacement of 35' Low Floor Buses	\$290,119	\$7,252,975
6	Burlingame Buses	\$224,247	\$5,606,181
7	Bus Spares	\$26,635	\$665,881
8	Hybrid Bus Upgrades	\$240,400	\$6,009,999
9	Rubey Park Transit Center Improvements	\$177,022	\$177,022
10	Passenger Amenities	\$221,277	\$221,277
11	Bicycle/Pedestrian Facilities	\$221,277	\$221,277
12	Advanced Public Transit System Technologies	\$442,554	\$442,554
13	Miscellaneous Projects	\$88,511	\$88,511
14	Highlands Direct Service - Off Season	\$65,564	\$1,639,091
15	AABC/Burlingame Service	\$1,092,727	\$27,318,175
16	Split Castle/Maroon Service	\$2,185	\$54,636
17	Extend Galena Street Shuttle \& Reverse Hunter Creek	\$125,664	\$3,141,590
18	Maroon Creek Roundabout Transit Center Plan	\$355,136	\$8,878,407
19	Modify Cemetery Lane Route	\$29,504	\$737,591
20	Improved Castle/Maroon	\$737,591	\$18,439,768
Subtotal		\$8,159,489	\$176,371,820
Funding Sources			
	City of Aspen		\$165,371,820
	FTA 5309		\$11,000,000
Subtotal			\$176,371,820
TOWN OF AVON			
M	Capital Replacement (Maintain Existing Service)	\$1,142,446	\$28,561,152
M	Operating (Maintain Existing Service)	\$2,076,181	\$51,904,533
21	Transit Center, Phases I \& II	\$64,754	\$1,618,855
22	Purchase Bus Shelters	\$12,141	\$303,535
23	GPS Information System	\$4,047	\$101,178
24	Service Expansion (Village at Avon)	\$262,254	\$6,556,362
25	Service Expansion (Village at Avon) - vehicles	\$60,707	\$1,517,676
	Bus Wash Improvements	\$546,364	\$546,364
	Parking Facility	\$7,649,089	\$7,649,089
Subtotal		\$11,817,984	\$98,758,744

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
Funding Sources			
	FTA 5309		\$10,000,000
	Fixed-Route Contracts		\$51,091,512
	Other		\$37,667,232
Subtotal			\$98,758,744
COLORADO MOUNTAIN COLLEGE			
M	Capital Replacement (Maintain Existing Service)	\$76,491	\$1,912,272
M	Operating (Maintain Existing Service)	\$215,267	\$5,381,680
27	Staff Expansion for W. Garfield County	\$45,457	\$1,136,436
Subtotal		\$337,216	\$8,430,389
Funding Sources			
	Fares/Donations		\$863,283
	Dedicated Transit Tax		\$956,440
	FTA 5310		\$515,292
	Anshutz Family Foundation		\$286,932
	United Way of Garfield County		\$459,091
	Iselin Foundation		\$26,780
	Rotary Clubs		\$114,773
	Aspen Valley Med. Foundation		\$191,288
	Deardorf Foundation		\$114,773
	Older Americans Contract		\$1,755,794
	Garfield County Contract		\$860,796
	Cities/Towns Contracts		\$461,004
	Other		\$1,824,143
Subtotal			\$8,430,389
ECO			
M	Capital Replacement (Maintain Existing Service)	\$654,827	\$16,370,669
M	Operating (Maintain Existing Service)	\$4,807,999	\$120,199,970
32	Expand Fleet w/ 5 Vehicles	\$80,943	\$2,023,569
35	Transit Center, Eagle County Airport	\$80,943	\$2,023,569
29	Bus Shelters/Bus Stop Amenities	\$52,613	\$1,207,624
Subtotal		\$5,677,324	\$141,825,400
Funding Sources			
	Fares/Donations		\$26,664,309
	Dedicated Transit Tax		\$108,161,091
	FTA 5309		\$7,000,000
Subtotal			\$141,825,400

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
GLENWOOD SPRINGS			
M	Capital Replacement (Maintain Existing Service)	\$327,818	\$8,195,453
M	Operating (Maintain Existing Service)	\$781,528	\$19,538,205
41	Service Expansion - 30-min. headways	\$1,089,949	\$27,248,732
43	Bus Stops/Shelters	\$811,019	\$811,019
44	Transit/Information Center	\$109,273	\$109,273
Subtotal		\$3,119,587	\$55,902,681
Funding Sources			
	Glenwood Springs		\$31,537,681
	Fares		\$3,915,000
	Dedicated Sales Tax		\$16,200,000
	FTA 5311		\$1,250,000
	FTA 5309		\$3,000,000
Subtotal			\$55,902,681
RFTA			
M	Capital Replacement (Maintain Existing Service)	\$3,713,087	\$92,827,186
M	Operating (Maintain Existing Service)	\$9,481,473	\$237,036,827
49	RTA Additional Services (Also included in BRT \& Rail)	\$3,865,016	\$71,667,169
50	Rifle North Park-and-Ride	\$218,545	\$218,545
51	Catherine's Store Park-and-Ride Expansion	\$163,909	\$163,909
52	New Castle Park-and-Ride	\$546,364	\$546,364
53	Interoffice Computer Connections	\$1,092,727	\$1,092,727
54	New Admin. Office Building	\$4,370,908	\$4,370,908
55	Bus Stop Improvements	\$546,364	\$546,364
111	New Castle Local Circulator	\$443,162	\$11,079,038
112	Sunlight Mountain Resort Route	\$443,162	\$11,079,038
113	CMC Spring Valley Route	\$443,162	\$11,079,038
114	Aspen to Snowmass Transit Service	\$1,618,855	\$40,471,370
121	Rifle Local Circulator Service	\$445,185	\$11,129,627
Subtotal		\$27,391,917	\$493,308,108
Funding Sources			
	Fares		\$70,529,454
	Maroon Bells		\$4,112,154
	Specials		\$1,080,351
	Advertising		\$309,447
	FTA 5311		\$4,175,000
	Dedicated Transit Tax		\$196,725,186
	Other Revenues		\$155,542,892

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
	Sewer Line/N 40		\$340,605
	FTA 5309		\$32,000,000
	Contribution		\$22,132,737
	Sale of Fixed Assets		\$6,360,282
Subtotal			\$493,308,108
SUMMIT STAGE			
M	Capital Replacement (Maintain Existing Service)	\$666,159	\$16,653,969
M	Operating (Maintain Existing Service)	\$5,466,913	\$136,672,830
56	Transit Planning/Marketing Position	\$24,283	\$607,071
57	ITS/AVL Equipment for Buses	\$1,639,091	\$1,639,091
59	Summit Stage, Facility Expansion	\$4,261,635	\$4,261,635
62	Maintenance Facility Improvements	\$1,639,091	\$1,639,091
63	Bus Shelters/Bus Stop Amenities	\$737,591	\$737,591
64	Vanpool Service	\$81,955	\$2,048,863
65	Marketing Program	\$6,071	\$151,768
66	Silverthorne Transit Station Enhancement	\$546,364	\$546,364
67	Frisco Transit Station	\$546,364	\$546,364
68	Summit Cove Transit Station	\$546,364	\$546,364
69	Keystone Transit Station	\$1,639,091	\$1,639,091
70	Copper Mountain Transit Station	\$1,639,091	\$1,639,091
71	Frisco Station Signage	\$81,955	\$81,955
73	Fueling Facility	\$546,364	\$546,364
80	Service Expansion - Breckenridge to Keystone	\$218,545	\$5,463,635
Subtotal		\$20,286,922	\$175,421,131
Funding Sources			
	Dedicated Transit Tax		\$167,400,000
	FTA 5310		\$824,444
	FTA 5311		\$1,925,000
	FTA 5309		\$4,000,000
	Other		\$1,271,687
Subtotal			\$175,421,131
TOWN OF BRECKENRIDGE			
M	Capital Replacement (Maintain Existing Service)	\$437,091	\$10,927,270
M	Operating (Maintain Existing Service)	\$1,092,727	\$27,318,175
81	Service Expansion	\$1,626,949	\$40,673,727
82	Service Expansion - Vehicles	\$1,748,363	\$1,748,363
83	Breckenridge Intermodal Center/Parking Structure	\$34,420,901	\$34,420,901
84	Gondola - Capital	\$19,669,086	\$19,669,086

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
85	Gondola - Operating	\$764,909	\$19,122,723
86	Transit Coordination w/ Ski Area	\$2,537,555	\$63,438,873
87	Bus Storage/Maintenance Facility	\$5,463,635	\$5,463,635
89	GPS Information System	\$327,818	\$327,818
90	ITS/AVL Equipment	\$273,182	\$273,182
91	Bus Stop/Shelters	\$109,273	\$109,273
Subtotal		\$68,471,488	\$223,493,025
Funding Sources			
	Local Resources		\$206,893,025
	FTA 5311		\$600,000
	FTA 5309		\$16,000,000
Subtotal			\$223,493,025
TOWN OF VAIL			
M	Capital Replacement (Maintain Existing Service)	\$485,656	\$12,141,411
M	Operating (Maintain Existing Service)	\$3,387,454	\$84,686,343
92	Multimodal Transit Center	\$16,390,905	\$16,390,905
93	Vail, Capital Expansion	\$5,463,635	\$5,463,635
94	Vail, Enhanced Services Operating	\$404,714	\$10,117,843
96	Vail, Bus Shelters	\$163,909	\$163,909
97	Vail, Global Positioning System	\$273,182	\$273,182
Subtotal		\$26,569,455	\$129,237,227
Funding Sources			
	Local Resources		\$118,237,227
	FTA 5309		\$11,000,000
Subtotal			\$129,237,227
TOWN OF SNOWMASS VILLAGE			
M	Capital Replacement (Maintain Existing Service)	\$676,475	\$16,911,877
M	Operating (Maintain Existing Service)	\$2,076,181	\$51,904,533
98	Redevelop Park-and-Ride w/ Bus Depot (Rodeo Parking Lot)	\$439,823	\$439,823
99	Bus Stop Improvements	\$695,130	\$695,130
100	Transit Plaza/P-n-R (\$6,150,000/\$9,406,000) Mall Transit Center	\$16,998,461	\$16,998,461
101	Expand Service - 4 Routes	\$174,836	\$4,370,908
102	Transit Offices	\$524,509	\$524,509
103	Bus Storage Facility	\$2,731,818	\$2,731,818
Subtotal		\$24,317,233	\$94,577,057

2030 Intermountain Regional Transportation Plan

Table 30. Long-Range Constrained Plan by Submitting Agency (Transit Element)

Project \#	Description	2005 Annual Cost	25-Year Cost (2006-2030)
Funding Sources			
	Real Estate Transfer Tax		\$27,808,866
	Billed Specials		\$494,262
	Ski Company Mitigation		\$20,369,853
	RFTA Contract		\$7,973,100
	General Funds		\$18,693,342
	FTA 5311		\$500,000
	FTA 5309		\$9,500,000
	Other Revenues		\$9,237,634
Subtotal			\$94,577,057
25-Year Intermountain Regional Total			\$1,597,325,582
Source:LSC Transportation Consultants			

apPENDIX a. PUBLIC PARTICIPATION

2030 Intermountain Regional Transportation Plan

PUBLIC INVOLVEMENT

To provide opportunities for citizen input, two public open houses were held over the course of the planning process. To ensure sufficient public notice, advertisements were placed in five newspapers: the Glenwood Post Independent, the Summit Daily, the Aspen Times Daily, the Vail Daily, and the Leadville Chronicle (a weekly publication). In addition, a flyer was mailed to over 300 persons on a mailing list consisting of 2020 plan participants, county and local government officials, and other interested community members. Notices, in both English and Spanish, were posted in prominent public places and distributed to Hispanic community organizations.

The first open house was held on August 12, 2003 at the Garfield County Courthouse building in Glenwood Springs. At this open house, the results of the transportation system inventory were presented, as were the Regional Visions, Values, Goals and Objectives.

SUMMARY OF COMMENTS

- The 4-laning of SH 82 across Maroon Creek in Aspen should not occur before an alternate route to SH 82 in Glenwood Springs is constructed. More commuter time is lost on Grand Avenue (in Glenwood Springs) than on Main Street (in Aspen). The economic impact to Glenwood Springs is greater.
- Commuter rail deserves no consideration before 2030. The best use of the RFTA rail corridor would be to remove and sell the tracks to fund a pedestrian/bike trail.
- The Intermountain 2030 Transportation Plan needs to include a big commitment to mass transit.
- The I-70 corridor will need a mass transit system by 2030. The system should be highspeed and convenient for participants in our tourist economy.
- The biggest detriment to visiting the ski resorts is the drive from Denver International Airport.
- Cottonwood Pass should be improved to provide a bypass for I-70/SH 82 through Glenwood Springs.
- Red Buffalo Pass should be revisited to provide an alternate route when Vail Pass is closed.
- I-70 should be six-laned when possible, particularly though steep sections.

PUBLIC OPEn HOUSE
Location: Garfield County Courthouse Plaza $1088^{\text {th }}$ Street, Room 100 Glenwood Springs, CO 81601

Date: \quad 4:00 PM to 8:00 PM
Tuesday, August 12, 2003
SIGN-In SHEET
Name
Address
Phone \#

Deff TMeISONA GINCO EuGinEERNG $625-6172 \times T 4002$
David Miller 222 s.th $^{\text {th }} 6^{\text {th }}$ St. Rm 317 GrandJet 9702487075
$\frac{\text { CHARLES BUCK } 2951 \text { E. Maplewool tre (303) 721-1440 }}{\text { Grenewosd VIL co 80'II }}$

| Jeff Wetzer Acos C 81620 | 7484120 |
| :--- | :--- | :--- |
| City of Glenwood | |

Melissa haeser City of Glenwood 101 wh $8^{\text {th }}$ St. Gw 81601 970-384-6437

PUBLIC OPE ก HOUSE
Location: Garfield County Courthouse Plaza $1088^{\text {th }}$ Street, Room 100 Glenwood Springs, CO 81601

Date: \quad 4:00 PM to 8:00 PM
Tuesday, August 12, 2003

JOE ELSE 202 centennial 81601945.7629
JOAN D. Naciscesp city of to An 920-504Z Kelley Cox G.S. Post Independent

Corey Varderbeek 830 Blake are G425 $945-5945$

Felsburg Holt \& Unlevig

PUBLIC OPEn HOUSE
Location:
Garfield County Courthouse Plaza $1088^{\text {th }}$ Street, Room 100 Glenwood Springs, CO 81601

Date: \quad 4:00 PM to 8:00 PM
Tuesday, August 12, 2003
SIGN-In SHE દT

Alice Hubbard 330 Oak Run Cidale $81623 \quad 963-9012$ CattryTutlle 226 Heathen GSC 81601 928-9708
Andrew Barantax 121 w 6 6w5, co 81601945.8591 FLOYO DIEMOZ too pinyon " "945-671
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

2030 Intermountain Regional Transportation Plan

The second public open house was held on December 18, 2003 at the Summit County Community and Senior Center in Frisco. The focus of this open house was to present the corridor visions developed by the RPC.

SUMMARY OF COMMENTS

- MagLev needs to be still in the consideration for the I-70 corridor. Colorado needs to be part of the connection between the east and west coasts. Unless MagLev is in place when that system is built, it might go around us instead, which is what happened when the railroads were built.
- The cost of MagLev is not as high as the consultants have said; it would be selfsupportive within 10 years. More lanes will not help.
- Monorail should be considered for the I-70 corridor.
- More stateline-to-stateline highways are needed to provide alternate routes to I-70. Trucks should then be encouraged to use these routes rather than I-70, thereby relieving the ski corridor. Routes to be four-laned could include US 285/SH 50 and SH 160.

PUBLIC OPEn HOUSE
Location: Summit County Community and Senior Center 0151 Peak One Boulevard Frisco, CO 80443

Date: \quad 4:00 PM to 7:00 PM
Thursday, December 18, 2003
SIGN-In SHEET
Name
Address
Phone \#
CHARLES BUCK $7951 \in$ MANCENODD \quad (303) $721-1440$ Kenneth A Ryan

Steve Hill Box 1908 Frisco (970) 668-4202
Gary Lindstrom Box 68 , Bredtaind $970-453-3411$ $\frac{\text { Phodewht the } 816 \text { Blue Ridged } 5 \text { in } 468160}{\text { Priscilla LLedbory }}$ Priscilla Ledbory
Per Peek Po zoxiss 6 970.453.3185

TYLER WULDON Po30x 399 sMvecintrue do 303512.5750
Dorm Roberts po Box 1224 Fuses 6684205

$$
\begin{aligned}
& \text { Btl Linflè Bot } 1309 \text { Silvertlome } 9702627341
\end{aligned}
$$

GRANT ANDERSON BOX 1413 FRISCO $80443 \quad 668-4414$

PUBLIC OPE ก HOUSE

Location: Summit County Community and Senior Center 0151 Peak One Boulevard Frisco, CO 80443

Date: \quad 4:00 PM to 7:00 PM
Thursday, December 18, 2003

SIGก-In SHEET

Name
Address
Silverthorne CO. Rachael Mitchell P.O.Böx24111 970-389-7281

Silverthorne CO
Alex de Ravel P.O. Box 23927
Ann Skinner 18500 E Colfax 3037575129
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Felsburg Holt \& Ullevig

2030 Intermountain Regional Transportation Plan

The third public open house was held on August 26, 2004 at the Minturn Town Center. This meeting was held in conjunction with CDOT to present both the Draft Regional Transportation Plan and the Draft Statewide Transportation Plan.

SUMMARY OF COMMENTS

- When will the Eagle Airport interchange be constructed?
- What improvements are envisioned for US 6 in the Avon area?
- Both SH 24 and SH 91 are major commuter routes from Lake County to the resort areas.
- SH 24 needs shoulder improvements - safety is a major issue on this road.
- SH 9 from Park County into Breckenridge is also a major commuter route.
- Congressional earmarking of projects bypasses the regional planning process.
SIGN-IN SHEET
2030 Statewide Transportation Plan Open House

August 26, 2004

2030 Intermountain Regional Transportation Plan

The fourth and final public open house was held on September 2, 2004 at the Garfield County courthouse building in Glenwood Springs. This meeting was also a joint IRTP/CDOT presentation of the draft plans.

SUMMARY OF COMMENTS

- There needs to be a final solution for the relocation of SH 82 in Glenwood Springs (Grand Avenue Bypass).
- Grand Avenue is not the sole responsibility of CDOT. Recognizing this, the City of Glenwood Springs will submit a referendum for tax moneys designated to the relocation of Grand Avenue.
- The corridor vision for SH 82 needs to emphasize multimodal more, and to reference the plans for improving transit as identified in the Corridor Investment Study (Bus Rapid Transit - BRT).
- Mass transportation needs to be encouraged in the I-70 Mountain Corridor.
SIGN-IN SHEET
2030 Statewide Transportation Plan Open House
SIGN-IN SHEET

MEMO TO GARFIELD COUNTY COMMISSIONERS 9/02/04
Glenwood's City Council will submit a referendum for citizen approval for the up and coming November election.

The City presently has a $1 / 4$ cent sales tax that has been used successfully for many street improvements as well as the purchase of right's of way. This tax will expire next year. The new referendum will ask that this $1 / 4$ cent tax be extended plus add another $1 / 4$ cent tax for a total of $1 / 2$ cent. No less than one half of the new $1 / 4$ cent tax is designated to be used to advance a final solution for the relocation of Highway 82.

Council realizes that the disruptive traffic on Grand Ave is not the sole and total responsibility of CDOT. It's our problem too. They want to participate with CDOT to encourage a final resolution.

An Environmental Impact Statement will be needed. It will analyize all of the alternatives and final settle on one.

1. DO NOTHING
2. A HIGHWAY EAST OF TOWN
3. A FOGHWAY ON THE RAIL COORIDOR
4. A HIGHW AY ON MIDLAND AVE

Thirty one years ago Council designated Midland Ave as the location of the 82 by-pass. They knew it would take 20 years to accomplish. It didn't happen. Over the past 31 years we've had 8 major studies, on average, one every 3 or 4 years. In 1983 a 22 member citizens advisory group spent a great deal of time and effort. They arrived at a solution. Nothing happened.

In 1999 another group composed of a large number of citizens studied the problem and came to a potential solution. It's time we do the final study, the Environmental Impact Statement.

The severing of our town with cars and trucks and the congestion and noise they bring will soon destroy our community. Our dilemma affects far more than businesses on Grand Ave. It affects the citizens of all our valley communities from Aspen to Parachute. Those people, the majority who are Garfield County residences, must also travel through Glenwood to go to and from work, business, or play. It will affect families, from children walking to school every day, to the elderly who also must cross this highway. Buses will not be able to function, they will not be able to keep a schedule.

So you see, it is also Garfield County's problem. I ask this Commission to endorse this referendum. If both the County and City show a unified desire to solve our problem once and for all, CDOT will surely be encouraged to advance our cause on their 2030 priority schedule.

Floyd Diemoz
400 Pinyon St. Glenwood Springs, Co

A LIST OF MAJOR STUDIES OVER THE PAST 31 YEARS ADDRESSING THE DESIRE BY THE CITIZENS OF GLENWOOD SPRINGS TO REDUCE TRAFFIC NOISE AND CONGESTION (ESPECLALLY TRUCK TRAFFIC) ON GRAND AVE. BY RELOCATING STATE HWY. 82

1973 - MIDLAND DESIGNATION BY CITY COUNCIL FOR LOCATION OF HIGH HIGHWAY 82 BY-PASS

1977 - OBLINGER SMITH
1979- CENTENNIAL ENGINEERNG
1983- A LENGTHY STUDY BY A CITIZENS ADVISORY BOARD PROVIDES A NEAR UNANIMOUS CONCENSUS FOR A BY-PASS BY 21 OF 22 MEMBERS

1991 - URS - ROAD \& BRIDGE STUDY
1993 - CARTER \& BURGESS - MNI-ENVIRONMENTAL ASSESSMENT OF OBLINGER SMITH

1994 - CARTER \& BURGESS
1997 - BRAGDON - RELOCATION OF 116 INTERCHANGE
1999 - BALLOFFET W/ CITIZENS ADVISORY GROUPS
2004-CORRIDOR INVESTMENT STUDY.
2004 - PROPOSED SALES TAX ISSUE FOR RELOCATION OF STATE HWY. 82

2030 Intermountain Regional Transportation Plan

apPENDIX B. CORRIDOR VISIONS

2030 Intermountain Regional Transportation Plan

Corridor Vision: I-70 West Mountain Corridor Transportation Corridor: 1

Planning Region: 11 - Intermountain
State Highway: I-70
Beginning Mile Post: 116
Ending Mile Post: 260

Description

Major Interstate East/West connection from Glenwood Springs to C-470. This corridor segment encompasses the parallel State Highway 6 facilities along its length as well as the Spur Road connections at Eagle and Edwards.

Vision Statement

The Vision for the I-70 corridor between Glenwood Springs and C-470 is primarily to increase mobility as well as to improve safety and to maintain system quality. This corridor serves as a multi-modal Interstate facility connecting to places outside the region and making east-west connections within the Colorado Rocky Mountains. In addition, it provides for hazardous materials transport and military defense for our country. The transportation system in the area serves towns, cities, and destinations within and beyond the corridor. The I-70 Mountain Corridor Programmatic Environmental Impact Study, currently underway, is evaluating alternatives for this corridor. Future travel modes may include passenger vehicle, bus service, an advanced guideway system, passenger rail, truck freight, bicycle/pedestrian facilities, aviation, and Transportation Demand Management. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase significantly. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, safety, system preservation, and environmental responsibility. The economy in the corridor depends highly on tourism and the economic benefits of the presence of many second homes. These two factors are directly related to the recreational opportunities provided by large amounts of public lands and bountiful natural environmental amenities. Users of this corridor want to preserve the mountain character of the area, while supporting the movement of tourists, commuters and consumer goods in and through the corridor and recognizing the environmental, economic and social needs of the surrounding area. This corridor is included in the 2003 Strategic Investment Plan, and should be included in future strategic programming efforts.

Two segments of SH 6, from Dotsero to Dowd Junction and from Dillon to I-70 over Loveland Pass, are parallel facilities that support the vision of the I-70 corridor by providing for local access needs and east-west connection for communities along the corridor. I-70 F and I-70 G are the Spur Roads connecting SH 6 to I-70 at Eagle and Edwards. These Spur Roads also provide for local access needs as well as connection to the Interstate system.

2030 Intermountain
 Regional Transportation Plan

Goals / Objectives

I-70
Reduce traffic congestion and improve traffic flow
Support interstate, recreation and commuter travel
Accommodate growth in consumer goods transport
Provide or expand bus, transit and/or advanced guideway systems
Promote transportation improvements that are environmentally responsible
SH 6 and Spur Roads
Reduce traffic congestion and improve traffic flow
Support recreation travel
Provide for bicycle/pedestrian travel
Reduce fatalities, injuries, and property damage crash rates
Maintain or improve pavement to optimal condition

Potential Strategies

I-70

Expand bus, transit, and advanced guideway systems
Add and maintain general purpose lanes where appropriate
Add and maintain new interchanges/intersections
Provide intermodal connections
Construct/improve/maintain the system of local roads
Add ramp metering
Construct separated bike facilities

Expand air service

Maintain an aesthetically appealing roadside environment and view sheds
Add noise walls
Maintain/enhance wildlife permeability
Add sediment ponds
Maintain Eisenhower/Johnson Tunnels

US 6 and Spur Roads

Reconstruct roadways
Bridge repairs/replacement
Add surface treatment/overlays
Add turn lanes
Improve geometrics
Consolidate and limit access and develop access management plans
Provide and expand transit bus, and rail services
Construct and maintain Park-N-Ride facilities
Provide bicycle/pedestrian facilities
Expand air service

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: I-70 West of Glenwood Springs Transportation Corridor: 2

Planning:
State Highway:
11 - Intermountain
Beginning Mile Post:
I-70
Ending Mile Post:
116

Description

I-70A: DeBeque to Glenwood Springs. This corridor also encompasses the parallel State Highway 6 facilities along its length, as well as the Spur Road connection at Silt.

Vision Statement

The Vision for the I-70 corridor west of Glenwood Springs is primarily to increase mobility as well as to maintain system quality and to improve safety. This corridor serves as a multi-modal Interstate facility, connects to places outside the region, and makes east-west connections within the Colorado River Valley. The transportation system in the area primarily serves towns, cities, and destinations within the corridor as well as destinations outside of the corridor. Future travel modes expected in the corridor include passenger vehicle, bus service, passenger rail, truck freight, rail freight, bicycle/pedestrian facilities, aviation, and Transportation Demand Management. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, safety, system preservation, and regional commuter travel. In fact, this corridor, in conjunction with the SH 82 corridor, represents a significant regional commuter travel corridor between Garfield County and the Roaring Fork Valley. The corridor depends on tourism, agriculture, and commercial activity for economic activity in the area; fiber optic lines along I-70 and along the rail corridor also support economic viability. Users of this corridor want to preserve the rural and agricultural character of the area, while supporting the movement of tourists, commuters, freight, and farm-to-market products in and through the corridor and recognizing the environmental, economic and social needs of the surrounding area. This corridor is included in the 2003 Strategic Investment Plan, and should be included in future strategic programming efforts.

Sections of SH 6, from DeBeque to Parachute and from I-70 west of Rifle to Canyon Creek, are parallel facilities that provide for local access needs and east-west connections between communities along the corridor. I-70 E, the Silt Spur Road, also provides for local access needs as well as connection to the Interstate system. The following Goals, Objectives, and Strategies apply specifically to these facilities:

Goals / Objectives

1-70

Connect all communities with an efficient multi-modal transportation network
Increase multi-modal opportunities
Preserve and improve the quality of the existing system
Increase mobility to meet the transportation demand
Provide a safe transportation network

2030 Intermountain
 Regional Transportation Plan

SH 6 and Spur Road

Reduce traffic congestion and improve traffic flow
Support recreation travel
Provide for bicycle/pedestrian travel
Reduce fatalities, injuries, and property damage crash rates
Maintain or improve pavement to optimal condition

Strategies

I-70
Add new Interchanges/Intersections
Reconstruct roadways
Add surface treatment/overlays
Construct intersection/interchange improvements
Improve geometrics
Construct and maintain Park-N-Ride facilities
Provide and expand transit bus and rail services
Provide bicycle/pedestrian facilities
Construct bicycle/pedestrian overpasses
Construct separated bike facilities
SH 6 and Spur Road
Reconstruct roadways
Bridge repairs/replacement
Add surface treatment/overlays
Add turn lanes
Improve geometrics
Consolidate and limit access and develop access management plans
Provide and expand transit bus, and rail services
Construct and maintain Park-N-Ride facilities
Provide bicycle/pedestrian facilities
Expand air service

2030 Intermountain
 Regional Transportation Plan

Corridor Vision - SH 9 - Fairplay to Breckenridge Transportation Corridor: 3

Planning Region: 11 - Intermountain
State Highway:
Beginning Mile Post: 64
Ending Mile Post: 86

Description

SH 9C between Fairplay and Breckenridge

Vision Statement

The Vision for the SH 9 corridor south of Breckenridge is primarily to improve safety as well as to maintain system quality and to increase mobility. This corridor serves as a multi-modal local facility connecting to places outside the region and making north-south connections within the Upper Blue River Valley. The transportation system serves towns, cities and destinations within the corridor as well as destinations outside the corridor. Future modes of travel include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, and Transportation Demand Management. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value environmental responsibility in establishing transportation choices, connections to other areas, safety, and system preservation. Recreation and tourism are the primary economic drivers in the area. Preserving the rural mountain character of the area while supporting the movement of tourists and commuters in and through the corridor is important to the users of the corridor, as is recognizing the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Support commuter travel
Support recreation travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add turn lanes
Add/improve shoulders
Add surface treatment/overlays
Improve visibility/sight lines
Consolidate and limit access and develop access management plans
Promote carpooling and vanpooling
Add drainage improvements
Add shallow wetlands construction

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 9 - Breckenridge to I-70 at Frisco Transportation Corridor: 4

Planning:	11- Intermountain
State Highway:	SH 9
Beginning Mile Post:	86
Ending Mile Post:	97

Description

SH 9C: Breckenridge to I-70 at Frisco

Vision Statement

The Vision for the SH 9 corridor from Breckenridge to Frisco is primarily to increase mobility as well as to improve safety and to maintain system quality. This corridor serves as a multi-modal local facility, connecting to places outside the region and making north-south connections within the Upper Blue River Valley. The SH 9 Frisco to Breckenridge Environmental Impact Study, currently underway, is evaluating alternatives for this corridor. Future travel modes include passenger vehicle, bus service, bicycle/pedestrian facilities, and Transportation Demand Management. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value high levels of mobility, transportation choices, safety, and system preservation. Tourism, recreation and commercial activities are the economic drivers in the area. Although there are areas of dense urban development along the corridor, users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists and commuters in and through the corridor. At the same time, it is important that transportation improvements in the corridor recognize the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Reduce traffic congestion and improve traffic flow
Support commuter travel
Support recreation travel
Expand transit usage
Provide for safe movement of bicycles and pedestrians

Strategies

Add general purpose lanes at appropriate locations
Add turn lanes
Improve geometrics
Consolidate and limit access and develop access management plans
Provide and expand transit bus and rail services
Add bus pullouts
Promote carpooling and vanpooling
Promote use and maintenance of variable message signs
Improve ITS Traveler Information, Traffic Management and Incident Management
Improve wildlife crossings

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 9 North of I-70

Transportation Corridor: 5

Planning:	11- Intermountain
State Highway:	SH 9
Beginning Mile Post:	101
Ending Mile Post:	138

Description

SH 9D: I-70 at Silverthorne to Kremmling

Vision Statement

The Vision for the SH 9 corridor north of I-70 is primarily to improve safety while maintaining system quality and increasing mobility. This corridor serves as a multi-modal local facility, connects to places outside the region, and makes north-south connections within the Lower Blue River Valley, providing for commuter travel and public land access. Future travel modes include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, and Transportation Demand Management. The transportation system in the area primarily serves destinations outside of the corridor. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. This corridor is included in the 2003 Strategic Investment Plan, and should be included in future strategic programming efforts. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, safety, and system preservation. They depend on tourism, agriculture, and commercial activity for economic activity in the area. Although there are high levels of development within Silverthorne, users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists and commuters in and through the corridor, recognizing the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Increase travel reliability and improve mobility
Support recreation travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Preserve the existing transportation system

Strategies

Reconstruct roadways
Add passing lanes
Improve geometrics
Add turn lanes
Add/improve shoulders
Add surface treatment/overlays
Market transit services and provide incentives
Construct and maintain Park-N-Ride facilities
Construct and maintain transit stations
Promote carpooling and vanpooling

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: SH 13 - Rifle to Meeker Transportation Corridor: 6

Planning: 11 - Intermountain
State Highway:
Beginning Mile Post:
Ending Mile Post:
SH 13A
0
41

Description

SH 13A: Rifle to Meeker

Vision Statement

The Vision for the SH 13 Rifle to Meeker corridor is to provide an intermodal transportation network that will enhance the safety aspects while simultaneously preserving the wildlife, viewscape and outdoor recreational benefits of this critical North-South alternative link. This corridor serves as a multi-modal local facility, primarily serving areas outside the corridor, making north-south connections within the Government Creek Valley area. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. Tourism, recreation, and commercial activities are important economic factors in this area; therefore, the communities along the corridor value high levels of mobility, connections to other areas, safety, and system preservation. The compatibility of wildlife and vehicular traffic needs to be continually assessed in developing and evaluating transportation improvements.

Goals / Objectives

Increase travel reliability and improve mobility
Support recreation travel
Reduce fatalities, injuries and property damage crash rate
Maintain or improve pavement to optimal condition
Promote transportation improvements that are environmentally responsible

Strategies

Reconstruct roadways
Add turn lanes
Add passing lanes
Add roadway bypasses
Add new interchanges/intersections
Improve geometrics
Add surface treatment/overlays
Add roadway pullouts for breakdowns and slow vehicles
Construct, improve and maintain the system of local roads
Improve wildlife crossings

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 24 - Dowd Junction to Leadville Transportation Corridor: 7

Planning:	11 - Intermountain
State Highway:	SH 24
Beginning Mile Post:	143
Ending Mile Post:	177

Description

SH 24A: Dowd Junction to Leadville

Vision Statement

The Vision for the SH 24 corridor north of Leadville is primarily to improve safety, while maintaining system quality and increasing mobility. This corridor serves as a multi-modal local facility, provides commuter access, and makes east-west connections within the Arkansas River and Eagle River valleys. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, aviation, and Transportation Demand Management. In addition, there is the potential for future rail service on the Tennessee Pass line. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, safety, and system preservation. They depend primarily on tourism for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists, commuters, in and through the corridor, recognizing the environmental, economic and social needs of the surrounding area. SH 24, in conjunction with SH 91, provides an alternate route for I-70.

Goals / Objectives

Support commuter travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition
Support economic development while maintaining environmental responsibility
Support recreation travel

Strategies

Improve geometrics
Add passing lanes
Add/improve shoulders
Bypass downtown Minturn
Add accel/decel lanes
Add turn lanes
Add roadway pullouts for breakdowns and slow vehicles
Add surface treatment/overlays
Construct and maintain Park-N-Ride facilities
Add bus storage facility
Construct separated bike facilities
Add rest areas

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 24 - Leadville to Buena Vista Transportation Corridor: 8

Planning:	11 - Intermountain
State Highway:	SH 24A
Beginning Mile Post:	177
Ending Mile Post:	210

Description

SH 24A: Leadville to Buena Vista

Vision Statement

The Vision for the SH 24 corridor south of Leadville is primarily to improve safety as well as to maintain system quality and to increase mobility. This corridor serves as a multi-modal local facility, connects to places outside the region, and makes east-west connections within the Arkansas River Valley area. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, and aviation. In addition, there is the potential for future rail service via the Tennessee Pass line. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to experience only minimal increases. The communities along the corridor value high levels of mobility, connections to other areas, safety, and system preservation, and depend primarily on tourism for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists in and through the corridor, recognizing the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Provide for tourist-friendly travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition
Support economic development while maintaining environmental responsibility

Strategies

Improve geometrics
Add turn lanes
Add accel/decel lanes
Add/improve shoulders
Add roadway pullouts for breakdowns and slow vehicles
Add surface treatment/overlays
Construct separated bike facilities

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 82 - Glenwood Springs to Aspen Transportation Corridor: 9

Planning:
State Highway:
Beginning Mile Post:
Ending Mile Post:
11 - Intermountain
SH 82
0
40

Description

SH 82A: Glenwood Springs to Aspen

Vision Statement

The Vision for the SH 82 corridor between Glenwood Springs and Aspen is primarily to increase mobility as well as to maintain system quality and to improve safety. This corridor serves as a multimodal roadway on the National Highway System, providing commuter access, and making east-west connections within the Roaring Fork River Valley. The transportation system in the area primarily serves towns, cities, and destinations within the corridor as well as destinations outside the corridor. Future travel modes are envisioned to include passenger vehicle, bus service, bus rapid transit (BRT), truck freight, bicycle and pedestrian facilities, aviation, and Transportation Demand Management. BRT along the SH 82 corridor is included in the 2003 Strategic Investment Plan, and should be included in future strategic programming efforts. This corridor, in conjunction with the I-70 corridor west of Glenwood Springs, serves as a primary commuter corridor between Garfield County communities and the Roaring Fork Valley. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, safety, and system preservation. They depend on manufacturing, tourism, high-tech activity, agriculture, commercial activity, aggregate mining, and the ski industry for economic activity in the area. While there are distinct areas of urban development, users of this corridor want to preserve the rural, mountain, and agricultural character of the area while supporting the movement of tourists, commuters, and freight in and through the corridor. The importance of open space, economic vitality, and cultural/environmental/recreational benefits is well recognized in this corridor.

Goals / Objectives

Connect all communities with an efficient multi-modal transportation network Increase multi-modal opportunities Preserve and improve the quality of the existing system Increase mobility to meet the transportation demand Provide a safe transportation network

Strategies

Add roadway bypasses
Add new interchanges/intersections
Construct intersection/interchange improvements
Improve geometrics
Add surface treatment/overlays
Reconstruct roadways
Construct and maintain Park-N-Ride facilities
Provide bicycle/pedestrian facilities
Construct separated bike facilities

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: SH 82 - Aspen to SH 24

Transportation Corridor: 10

Planning:	11 - Intermountain
State Highway:	SH 82
Beginning Mile Post:	40
Ending Mile Post:	85

Description

SH 82A, Aspen to SH 24 at Twin Lakes

Vision Statement

The Vision for the SH 82 corridor between Aspen and SH 24 is primarily to improve safety as well as to maintain system quality and to increase mobility. This corridor serves as a multimodal local facility, connects to places outside the region, and makes east-west connections within the Arkansas River and Roaring Fork River valleys. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle and bicycle/pedestrian facilities. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to remain generally constant. The communities along the corridor value connections to other areas, safety, and system preservation. They depend on tourism for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists in and through the corridor. The importance of environmental, economic and social needs of the surrounding area is well recognized.

Goals / Objectives

Increase travel reliability and improve mobility
Support recreation travel
Provide for tourist-friendly travel
Reduce fatalities, injuries and property damage crash rate
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add passing lanes
Add/improve shoulders
Improve visibility/sight lines
Add guardrails
Improve rock fall mitigations
Add roadway pullouts for breakdowns and slow vehicles
Add surface treatment/overlays
Reconstruct roadways
Add rest areas
Add drainage improvements, add water quality inlet with oil/grit separators

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 91 - Leadville to Copper Mountain Transportation Corridor: 11

Planning: 11 - Intermountain
State Highway: SH 91
Beginning Mile Post: 0
Ending Mile Post: 23
\section*{Description}
SH 91A: Leadville to I-70 at Copper Mountain

Vision Statement

The Vision for the SH 91 corridor is primarily to improve safety, with system quality maintenance and increased mobility. This corridor serves as a multi-modal local facility, provides commuter access, and makes north-south connections within the Arkansas River Valley and Ten Mile Creek areas. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, aviation, and Transportation Demand Management. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value high levels of mobility, transportation choices, connections to other areas, and safety. They depend on tourism for economic activity; historically, mining was a primary economic generator in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists and commuters in and through the corridor, recognizing the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Support commuter travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition
Support economic development while maintaining environmental responsibility
Support recreation travel

Strategies

Improve geometrics
Add passing lanes
Add accel/decel lanes
Add turn lanes
Add/improve shoulders
Add roadway pullouts for breakdowns and slow vehicles
Add surface treatment/overlays
Construct and maintain Park-N-Ride facilities
Construct separated bike facilities
Add rest areas

Corridor Vision: SH131 - Wolcott to Steamboat Springs Transportation Corridor: 12

Planning:	11 - Intermountain
State Highway:	SH 131
Beginning Mile Post:	0
Ending Mile Post:	69

Description

SH 131A/B: I-70 at Wolcott to Steamboat Springs

Vision Statement

The Vision for the SH 131 corridor is primarily to improve safety, with maintaining system quality and increased mobility as secondary concerns. This corridor serves as a multi-modal local facility, connects to places outside the region, and makes north-south connections within the Upper Colorado River Valley area. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, passenger rail, truck freight, and rail freight. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value connections to other areas, safety, and system preservation. They depend on tourism and agriculture for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists, commuters, and freight in and through the corridor. The environmental, economic, and social needs of the surrounding area are well recognized.

Goals / Objectives

Support recreation travel
Improve access to public lands
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add passing lanes
Add turn lanes
Add/improve shoulders
Add guardrails
Bridge repairs/replacement
Add surface treatment/overlays
Add roadway pullouts for breakdowns and slow vehicles
Improve hot spots

2030 Intermountain Regional Transportation Plan

Corridor Vision: SH 133 - Hotchkiss to Carbondale Transportation Corridor: 13

Planning:	11 - Intermountain
State Highway:	SH 133A
Beginning Mile Post:	0
Ending Mile Post:	69

Description
SH 133A: Hotchkiss to SH 82 at Carbondale

Vision Statement

The Vision for the SH 133 corridor is primarily to improve safety, while maintaining system quality and increasing mobility. This corridor serves as a multi-modal local facility, connects to places outside the region, and makes north-south connections within the Crystal River Valley. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, bus service, truck freight, bicycle/pedestrian facilities, and Transportation Demand Management. Based on historic and projected population and employment levels, passenger traffic volumes are expected to increase while freight volumes will generally remain constant. The communities along the corridor value transportation choices, connections to other areas, safety, and system preservation, and depend on tourism for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists and commuters in and through the corridor, recognizing the environmental, economic, and social needs of the area.

Goals / Objectives

Support commuter travel
Support recreation travel
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add turn lanes
Add/improve shoulders
Add surface treatment/overlays
Improve rock fall mitigations
Consolidate and limit access and develop access management plans (Carbondale and Redstone)
Provide and expand transit bus and rail services
Construct and maintain Park-N-Ride facilities
Provide bicycle/pedestrian facilities
Construct separated bike facilities

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: SH 139 - I-70 to Rangely Transportation Corridor: 14

Planning:	11 - Intermountain
State Highway:	SH 139
Beginning Mile Post:	0
Ending Mile Post:	72

Description

SH 139A: I-70 to Rangely

Vision Statement

The Vision for the SH 139 corridor is primarily to improve safety with system quality and mobility improvements as secondary concerns. This corridor serves as a multi-modal local facility, connects to places outside the region, and makes north-south connections within the Douglas Pass area. The transportation system in the area primarily serves destinations outside of the corridor. Future travel modes include passenger vehicle, truck freight, and rail freight. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to increase. The communities along the corridor value connections to other areas, safety, and system preservation. They depend on tourism and agriculture for economic activity in the area. Users of this corridor want to preserve the rural mountain character of the area while supporting the movement of tourists, commuters, and freight in and through the corridor, recognizing the environmental, economic and social needs of the surrounding area.

Goals / Objectives

Support recreation travel
Improve access to public lands
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add passing lanes
Add turn lanes
Add/improve shoulders
Add guardrails
Improve hot spots
Add roadway pullouts for breakdowns and slow vehicles
Add surface treatment/overlays
Bridge repairs/replacement

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: SH 300 - SH 24 to End

Transportation Corridor: 15

Planning:	11 - Intermountain
State Highway:	SH 300
Beginning Mile Post:	0
Ending Mile Post:	3

Description

SH 300A: SH 24 at Malta to End

Vision Statement

The Vision for the SH 300 corridor is primarily to maintain system quality as well as to improve safety and to increase mobility. This corridor serves as a multi-modal local facility, provides local access to the National Fish Hatchery, and makes east-west connections within the Arkansas River Valley. The transportation system in the area primarily serves towns, cities, and destinations within the corridor. Future travel modes include passenger vehicle, truck freight, and bicycle/pedestrian facilities. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to remain generally constant. The communities along the corridor value safety and system preservation, and they depend primarily on tourism for economic activity in the area. Users of this corridor want to preserve the rural character of the area while supporting the movement of tourists in and through the corridor. The environmental, economic and social needs of the surrounding area are well recognized.

Goals / Objectives

Reduce fatalities, injuries and property damage crash rate
Provide for safe movement of bicycles and pedestrians
Preserve the existing transportation system
Maintain or improve pavement to optimal condition
Support economic development while maintaining environmental responsibility

Strategies

Construct, improve and maintain the system of local roads
Improve geometrics
Add/improve shoulders
Add surface treatment/overlays
Provide bicycle/pedestrian facilities
Stripe and sign designated bike lanes
Add drainage improvements
Promote environmental responsibility

2030 Intermountain
 Regional Transportation Plan

Corridor Vision: SH 325 - SH 13 to CR 217

Transportation Corridor: 16

Planning:	11 - Intermountain
State Highway:	SH 325
Beginning Mile Post:	0
Ending Mile Post:	11

Description

SH 325A: SH 13 north of Rifle to End at County Road 217

Vision Statement

The Vision for the SH 325 corridor is primarily to maintain system quality, with safety and mobility improvements as secondary concerns. This corridor serves as a multi-modal local facility, provides local access, and makes north-south connections within the Rifle Gap area. The transportation system in the area primarily serves towns, cities, and destinations within the corridor. Future travel modes include passenger vehicle, truck freight, and bicycle/pedestrian facilities. Based on historic and projected population and employment levels, both passenger and freight traffic volumes are expected to remain generally constant. The communities along the corridor value safety, system preservation, and connection to Flattops Wilderness Area. They depend on tourism and agriculture for economic activity in the area. Users of this corridor want to preserve the rural, mountain, and agricultural character of the area while supporting the movement of tourists, commuters, and farm-to-market products in and through the corridor. The environmental, economic and social needs of the surrounding area are well recognized.

Goals / Objectives

Support recreation travel
Improve access to public lands
Reduce fatalities, injuries and property damage crash rate
Eliminate shoulder deficiencies
Maintain or improve pavement to optimal condition

Strategies

Improve geometrics
Add/improve shoulders
Add guardrails
Improve hot spots
Add surface treatment/overlays
Improve rock fall mitigations

apPENDIX C. PROJECT PRIORITIZATION

2030 Intermountain
 Regional Transportation Plan

PROJECT EVALUATION GUIDELINES

Does the project support local land use plans?

- Intermediate and minor highway projects would get zero points
- Intermediate and minor transit projects and minor rail projects could get up to one point
- Pedestrian/bicycle project would get up to one point
- Major highway, transit, and rail projects could get up to three points

Does the project relieve congestion and/or incorporate TDM strategies?

- Major highway and transit projects could get up to three points depending on level of congestion relief
- Intermediate and minor highway and transit projects could get up to two points depending on level of congestion relief
- Major intermodal or multimodal projects could get up to two points depending on level of congestion relief
- All other projects would get zero points

Does the project improve transportation system continuity?

- Major highway and transit projects that fill in gaps could get up to three points
- Intermediate highway and transit projects could get up to one point
- Pedestrian/bicycle projects could get up to one point
- All other projects would get zero points

Does the project preserve the existing transportation system?

- Intermediate and minor (except erosion control) highway, major (bus replacement only) and intermediate transit projects and major rail projects could get up to three points
- All intermodal projects could get up to three points
- Major highway projects could get up to one point
- All pedestrian/bicycle projects could get up to one point

Is the project intermodal or multimodal?

- A project can get up to three points if it involves more than one mode, depending on the number of modes served by the project
- A project will get no points if it only involves one mode

2030 Intermountain
 Regional Transportation Plan

Is the project eligible for multiple funding sources?

- A project will be assigned no points if it only can be funded from one source
- A project will get up to two points if it can be funded by up to two funding sources
- A project will get up to three points if it can be funded by three or more funding sources

Does the project enhance the environment or minimize the external environmental impacts?

- If a project has the potential for reducing the number of vehicles on the roadway system, it can get up to three points, depending on the potential for success
- If the project has the potential to improve or eliminate non-vehicular based environmental impacts, such as improving wildlife crossings, drainage, or erosion control, it can get up to three points, depending on the potential for success
- If a project makes it easier to use the private automobile, it will get no points

Does the project preserve land?

- If the project will require the taking of land to implement, it will be given no points
- If the project makes improvements to the existing facilities without requiring more land, it could get up to three points

Does the project maximize the efficiency of the transportation system?

- Any addition of centerline highway miles will get no points
- Any improvements to the existing transportation system could get up to three points depending on the mode and the potential for achieving the goal

Does the project minimize the number of trips?

- Any project which makes it easier to use the private automobile or will have no effect on getting people out of their cars will get zero points
- Any project which provides an alternative to the private automobile could get up to three points depending on the potential for success

Does the project minimize travel distance/times between housing, employment, and community services?

- Projects that improve the connectivity of the bicycle/pedestrian system will be awarded up to 2 points
- Transit projects that improve the connectivity to housing, employment, and community services will be awarded up to 3 points

2030 Intermountain
 Regional Transportation Plan

Does the project minimize disruption to communities, including lowincome or minority communities?

- Points will be awarded to projects that avoid or minimize the amount of additional land required to implement the project
- Points will be awarded to projects that avoid or minimize impacts to low-income or minority communities
- Any project which makes improvements to the existing transportation system will get up to three points
- No points will be assigned for this criteria if the project would divide a community

Does the project minimize the need for additional local capital or reduce long-term maintenance costs imposed on local governments?

- A project will get three points if it represents a one-time expense like the replacement of a bridge or the installation of a traffic light
- Points will be awarded to projects that minimize the level of annual local expense required to support the investment

Does the project support economic development?

- Points will be assigned to the project if it has the potential to cause the redevelopment of land in and around the project
- A project will get no points if it is considered to be of a minor nature
- A project could get up to three points if it will introduce a major new mode into the mix of transportation solutions

Does the project have public support?

- Points will be awarded based on the level of support and conflict resolution involved with the project
- Points will be awarded based on the level of local funding allotted to the project

Does the project improve safety?

- Points will only be given to projects that will make the transportation system safer, for example: climbing lanes, geometric improvements, or the installation of traffic lights

|How easily can the project be implemented?

- A project could get up to three points if the environmental process is completed and any additional land has been acquired
- A project could get up to three points based on the level of preliminary engineering work completed
- A project will get no points if it will have a significant environmental impact

appendix D. CURRENT STIP

STIP Report													
Data as of: 06/07/2004					FY S2003 STIP (IN INFLATED DOLLARS)								
					Jun	1:40 pm							
Intermountain													
					County		Improvement Type	Funding		(Dolla	Thous	ands)	
$\stackrel{\mathrm{Reg}}{\#}$	$\begin{aligned} & \text { STIP } \\ & \# \end{aligned}$	$\begin{aligned} & \text { TIP } \\ & \# \end{aligned}$	Route \#	Length (Miles)		Project Sponsor		Source Type	2003	2004	2005	$\begin{array}{r} 2006-2008 \end{array}$	Future
USC5309													
Town of Vail (CASTA)													
HQ	IN5281				Eagle	TOWN OF VAIL							
							Bus Purchase (exist srvc)	F 5309	\$761	\$686	\$0	\$0	\$0
							Bus Purchase (exist srvc)	L L	\$190	\$171	\$0	\$0	\$0
								Total	\$951	\$857	\$0	\$0	\$0
Town of Avon (CASTA) Buses and Facilities													
HQ	IN5285				Eagle	TOWN OF AVON							
							Bus Purchase (exist srvc)	F 5309	\$746	\$1,048	\$0	\$0	\$0
							Bus Purchase (exist srvc)	L L	\$187	\$262	\$0	\$0	\$0
								Total	\$933	\$1,310	\$0	\$0	\$0
Eagle County (CASTA)													
HQ	IN5286				Eagle	ECO TRANSIT							
							Bus Purchase (exist srvc)	F 5309	\$181	\$400	\$0	\$0	\$0
							Bus Purchase (exist srvc)	L L	\$45	\$100	\$0	\$0	\$0
								Total	\$226	\$500	\$0	\$0	\$0
Roaring Fork Transportation Authority (CASTA)													
	IN5291				Pitkin	ROARING FORK TRANSIT AGENCY							
							Bus Purchase (exist srvc)	F 5309	\$740	\$891	\$0	\$0	\$0
							Bus Purchase (exist srvc)	L L	\$185	\$223	\$0	\$0	\$0
								Total	\$925	\$1,114	\$0	\$0	\$0
Summit Stage (CASTA)													
	IN5292				Summit	SUMMIT STAGE							
							Bus Purchase (exist srvc)	F 5309	\$726	\$273	\$0	\$0	\$0

[^0]

							Cap. - Hwy	F NH	\$292	\$4,749	\$0		\$18,280
							Reconst - Added Cap. - Hwy	F STA	\$362	\$643	\$644	\$6,190	\$18,280
							Reconst - Added Cap. - Hwy	S SHF	\$146	\$1,108	\$156	\$1,510	\$4,456
								Total	\$800	\$6,500	\$800	\$7,700	\$41,016
SH 9: North of Silverthorne to Ute Pass Road													
	IN179	N/A	009D	25.8	Summit	R1							
							Safety Roadway	F NH	\$0	\$337	\$0	\$0	\$0
							Safety Roadway	S SHF	\$0	\$63	\$0	\$0	\$0
								Total	\$0	\$400	\$0	\$0	\$0
170 Corridor Erosion Control													
01	IN183	N/A	070A	26.1	Summit	R1							
							Drainage or Erosion Control	F IM	\$886	\$89	\$889	\$978	\$6,930
							Drainage or Erosion Control	F I	\$0	\$59	\$0	\$0	\$6,930
							Drainage or Erosion Control	S SHF	\$114	\$17	\$111	\$122	\$945
								Total	\$1,000	\$165	\$1,000	\$1,100	\$14,805
WEST VAIL ROUNDABOUTS													
03	IN3135		070A	0.1	Eagle	CDOT REGION 3							
							New Interchange	S SHF	\$1,000	\$0	\$0	\$0	\$0
								Total	\$1,000	\$0	\$0	\$0	\$0
EBY CREEK ROAD													
03	IN5027		070F	0.3	Eagle	CDOT REGION 3							
							Reconst - Added Cap. - Hwy	F STA	\$0	\$0	\$828	\$0	\$0
							Reconst - Added Cap. - Hwy	S SHF	\$0	\$0	\$172	\$0	\$0
								Total	\$0	\$0	\$1,000	\$0	\$0
BOtTOM OF TENNESSEE PASS													
03	IN5033		024A	6.9	Lake	CDOT REGION 3							
							Safety Related Geometrics	F STA	\$161	\$482	\$3,890	\$1,938	\$0
							Safety Related Geometrics	S SHF	\$39	\$118	\$810	\$462	\$0
								Total	\$200	\$600	\$4,700	\$2,400	\$0
Summit County Park and Ride Lots													
01	IN5058	N/A			Summit	R1							
							Park-n-Rides	F STA	\$800	\$644	\$402	\$0	\$0
							Park-n-Rides	S SHF	\$200	\$156	\$98	\$0	\$0
								Total	\$1,000	\$800	\$500	\$0	\$0
SOUTH GLENWOOD INTERSECTION													
03	IN5140		082A	0.1	Garfield	CDOT REGION 3							
							Reconst - Added						

SH 9: North of Silverthorne to Ute Pass Road
01 IN179 N/A
170 Corridor Erosion Control
$01 \quad$ IN183 N/A
WEST VAIL ROUNDABOUTS
03 IN3135
EBY CREEK ROAD
03
03 IN5027
BOTTOM OF TENNESSEE PASS
03 IN5033
Summit County Park and Ride Lots
SOUTH GLENWOOD INTERSECTION
03 IN5140
Page 6 of 9

									רו丬yை рәұеб！ןqоиด
0\＄	0\＄	0\＄	0\＄	0\＄	7 71OL日	Кэиә反и！̣иоว О1			
0\＄	0\＄	0\＄	0\＄	0\＄	｜ełol				
0\＄	0\＄	0\＄	0\＄	0\＄	HHS S	әбр！！я			
0\＄	0\＄	0\＄	0\＄	0\＄	ช9コ	әбр！̣я			
							1003	әб¢э	88GSNI E0
									イэиә6u！łuoう О1
0\＄	0\＄	869＇T\＄	SZS\＄	O¢Z\＄	7 7iOlans	（dıs）Кıәృеs			
0\＄	0\＄	60て＇T\＄	0\＄	0\＄	｜eros				
0\＄	0\＄	6S\＄	0\＄	0\＄	HHS S	кемреоу －кıәјеs			
0\＄	0\＄	OST＇T\＄	0\＄	0\＄	ヨHS 」	кемреоу －кдәјеs			
							¢ ио！бәу	ทumuns	8عZ9Nı ठे
0\＄	0\＄	OtT\＄	0\＄	0\＄	1 PlO				
0\＄	0\＄	DT\＄	0\＄	0\＄	HHS S	кемреоу －রұәјеs			
0\＄	0\＄	92T\＄	0\＄	0\＄	ヨHS \ddagger	кемреоу －кıəея			
							ε ио！бәуу	ррәия	LعZ9Nı Оे
0\＄	0\＄	691\＄	0\＄	0\＄	｜elol				
0\＄	0\＄	9T\＄	0\＄	0\＄	${ }^{\text {H }} \mathrm{HS}$ S	кемреоу －久дјеs			
0\＄	0\＄	$\varepsilon \pm T \$$	0\＄	0\＄	ヨHS \ddagger	кемреоу －রiəjes			
							ε ио！бәу	әуеา	†¢Z9Nı ठे
0\＄	0\＄	06T\＄	0\＄	0\＄	1etol				
0\＄	0\＄	061\＄	0\＄	0\＄	OHS \ddagger	кемреоу －кiəృеs			
							ε ио！¢əәу	ррәияе	\＆єz9NI ठН
0\＄	0\＄	0\＄	09\＄	0\＄	$\mid{ }_{\text {Plo }}+1$				
0\＄	0\＄	0\＄	8\＄	0\＄	${ }^{\text {H }}$ S S	кемреоу －爪әјея			
0\＄	0\＄	0\＄	乙S\＄	0\＄	ヨHS \ddagger	кемреоу －爪ыәел			
							ε บо！¢əə $100 \bigcirc$	u！yP］	tto9ni ठे
									Ku！uep！M גəp｜nous pue

\bigcirc	\％	앙	ㅇㅇㅇ		\％	\％	\％	¢		
앙	앙	영		¢	¢	¢	O	¢		
\％	\％	\％	\bigcirc	\％	\％	\％	\％	\％		
앙	O	O	\bigcirc	\％	\bigcirc	\％	\％	앙		
$\stackrel{\pi}{\otimes n}$	\％	酉	发罳		ت	鸰		$\stackrel{\text { \％}}{ }$		
		¢		薎						
$\begin{gathered} \stackrel{4}{6} \\ 4 \end{gathered}$	\lrcorner				$\stackrel{5}{4}$	\lrcorner		은		

[^0]: Bridge Off Sys

